Выравнивание по ширине в "Ворде". Как убрать большие пробелы. Определение температуры воздуха

Под аналитическим выравниванием понимают определение основной проявляющейся во времени тенденции развития изучаемого развития. При этом развитие предстает как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющий во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически.

На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции.

Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

Чаще всего при выравнивании используются следующие зависимости:

Для расчета параметров уравнения тренда обычно используют метод наименьших квадратов. Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда.

Для линейного тренда нормальные уравнения МНК имеют вид:

где y i - уровни исходного ряда динамики;


t i - номера периодов или моментов времени;

n - число уровней ряда.

Систему можно упростить , перенеся начало отсчета времени t i в середину ряда. Тогда ∑t i будет равна 0 и система приобретет вид:

откуда , .

Построив уравнение регрессии , проводят оценку его надежности. Это делается посредством F -критерия Фишера, методика расчета которого рассмотрена в п. 9.5. Если F факт > F теор , то уравнение регрессии значимо, т.е. построенная модель адекватна фактической временной тенденции.

Во всяком статистическом распределении неизбежно присутствуют элементы случайности, связанные с тем, что число наблюдений ограничено, что произведены именно те, а не другие опыты, давшие именно те, а не другие результаты. Только при очень большом числе наблюдений эти элементы случайности сглаживаются, и случайное явление обнаруживает в полной мере присущую ему закономерность. На практике мы почти никогда не имеем дела с таким большим числом наблюдений и вынуждены считаться с тем, что любому статистическому распределению свойственны в большей или меньшей мере черты случайности. Поэтому при обработке статистического материала часто приходится решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую распределения, выражающую лишь существенные черты статистического материала, но не случайности, связанные с недостаточным объемом экспериментальных данных. Такая задача называется задачей выравнивания (сглаживания) статистических рядов.

Задача выравнивания заключается в том, чтобы подобрать теоретическую плавную кривую распределения, с той или иной точки зрения наилучшим образом описывающую данное статистическое распределение (рис. 7.5.1).

Задача о наилучшем выравнивании статистических рядов, как и вообще задача о наилучшем аналитическом представлении эмпирических функций, есть задача в значительной мере неопределенная, и решение ее зависит от того, что условиться считать «наилучшим». Например, при сглаживании эмпирических зависимостей очень часто исходят из так называемого принципа или метода наименьших квадратов (см. 14.5), считая, что наилучшим приближением к эмпирической зависимости в данном классе функций является такое, при котором сумма квадратов отклонений обращается в минимум. При этом вопрос о том, в каком именно классе функций следует искать наилучшее приближение, решается уже не из математических соображений, а из соображения, связанных с физикой решаемой задачи, с учетом характера полученной эмпирической кривой и степени точности произведенных наблюдений. Часто принципиальный характер функции, выражающей исследуемую зависимость, известен заранее из теоретических соображении, из опыта же требуется получить лишь некоторые численные параметры, входящие в выражение функции; именно эти параметры подбираются с помощью метода наименьших квадратов.

Аналогично обстоит дело и с задачей выравнивания статистических рядов. Как правило, принципиальный вид теоретической кривой выбирается заранее из соображений, связанных с существом задачи, а в некоторых случаях просто с внешним видом статистического распределения. Аналитическое выражение выбранной кривой распределения зависит от некоторых параметров; задача выравнивания статистического ряда переходит в задачу рационального выбора тех значений параметров, при которых соответствие между статистическим и теоретическим распределениями оказывается наилучшим.

Предположим, например, что исследуемая величина есть ошибка измерения, возникающая в результате суммирования воздействий множества независимых элементарных ошибок; тогда из теоретических соображений можно считать, что величина подчиняется нормальному закону:

(7.5.1)

и задача выравнивания переходит в задачу о рациональном выборе параметров и в выражении (7.5.1).

Бывают случаи, когда заранее известно, что величина распределяется статистически приблизительно равномерно на некотором интервале; тогда можно поставить задачу о рациональном выборе параметров того закона равномерной плотности

которым можно наилучшим образом заменить (выровнять) заданное статистическое распределение.

Следует при этом иметь в виду, что любая аналитическая функция , с помощью которой выравнивается статистическое распределение, должна обладать основными свойствами плотности распределения:

(7.5.2)

Предположим, что, исходя из тех или иных соображений, нами выбрана функция , удовлетворяющая условиям (7.5.2), с помощью корой мы хотим выровнять данное статистическое распределение; в выражение этой функции входит несколько параметров ; требуется подобрать эти параметры так, чтобы функция наилучшим образом описывала данный статистический материал. Один из методов, применяемых для решения этой задачи, - это так называемый метод моментов.

Согласно методу моментов, параметры выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик (моментов) теоретического распределения были равны соответствующим статистическим характеристикам. Например, если теоретическая кривая зависит только от двух параметров и , эти параметры выбираются так, чтобы математическое ожидание и дисперсия теоретического распределения совпадали с соответствующими статистическими характеристиками и . Если кривая зависит от трех параметров, можно подобрать их так, чтобы совпали первые три момента и т.д. При выравнивании статистических рядов может оказаться полезной специально разработанная система кривых Пирсона, каждая из которых зависит в общем случае от четырех параметров. При выравнивании эти параметры выбираются с тем расчетом, чтобы сохранить первые четыре момента статистического распределения (математическое ожидание, дисперсию, третий и четвертый моменты). Оригинальный набор кривых распределения, построенных по иному принципу, дал Н.А. Бородачев. Принцип, на котором строится система кривых Н.А. Бородачева, заключается в том, что выбор типа теоретической кривой основывается не на внешних формальных признаках, а на анализе физической сущности случайного явления или процесса, приводящего к тому или иному закону распределения.

Следует заметить, что при выравнивании статистических рядов нерационально пользоваться моментами порядка выше четвертого, так как точность вычисления моментов резко падает с увеличением их порядка.

Пример. 1. В 7.3 приведено статистическое распределение боковой ошибки наводки при стрельбе с самолета по наземной цели. Требуется выровнять это распределение с помощью нормального закона:

.

Нормальный закон зависит от двух параметров: и . Подберем эти параметры так, чтобы сохранить первые два момента – математическое ожидание и дисперсию – статистического распределения.

Вычислим приближенно статистическое среднее ошибки наводки по формуле (7.47), причем за представителя каждого разряда примем его середину:

Для определения дисперсии вычислим сначала второй начальный момент по формуле (7.4.9), полагая

Пользуясь выражением дисперсии через второй начальный момент (формула (7.4.6)), получим:

Выберем параметры и нормального закона так, чтобы выполнялись условия:

то есть примем:

Напишем выражение нормального закона:

Пользуясь в табл. 3 приложения, вычислим значения на границах разрядов

Построим на одном графике (рис. 7.5.2) гистограмму и выравнивающую ее кривую распределения.

Из графика видно, что теоретическая кривая распределения , сохраняя, в основном существенные особенности статистического распределения, свободна от случайных неправильностей хода гистограммы, которые, по-видимому, могут быть отнесены за счет случайных причин; более серьезное обоснование последнему суждению будет дано в следующем параграфе.

Примечание. В данном примере при определении , мы воспользовались выражением (7.4.6) статистической дисперсии через второй начальный момент. Этот прием можно рекомендовать только в случае, когда математическое ожидание исследуемой случайной величины сравнительно невелико; в противном случае формула (7.4.6) выражает дисперсию как разность близких чисел и дает весьма малую точность. В случае, когда это имеет место, рекомендуется либо вычислять непосредственно по формуле (7.4.3), или перенести начало координат в какую-либо точку, близкую к , и затем применить формулу (7.4.6). Пользование формулой (7.4.3) равносильно перенесению начала координат в точку ; это может оказаться неудобным, так как выражение может быть дробным, и вычитание из каждого при этом излишне осложняет вычисления; поэтому рекомендуется переносить начало координат в какое-либо круглое значение , близкое к .

Пример 2. С целью исследования закона распределения ошибки измерения дальности с помощью радиодальномера произведено 400 измерений дальности. Результаты опытов представлены в виде статистического ряда:

Выровнять статистический ряд с помощью закона равномерной плотности.

Решение. Закон равномерной плотности выражается формулой

и зависит от двух параметров и . Эти параметры следует выбрать так, чтобы сохранить первые два момента статистического распределения – математическое ожидание и дисперсию . Из примера 5.8 имеем выражения математического ожидания и дисперсии для закона равномерной плотности.

Аналогично случаям полубесконечного тела и пластины определяется температурное поле в стержне (рис. 18). Используя (21), получим

При, используя подстановку u 2 = t - ф и интеграл


Видно, что в стержне без поверхностной теплоотдачи (при b = 0) температура перед источником падает по закону exp(-vx/a), а позади него постоянна и равна q/(acpv). Теплоотдача уменьшает температуру.

Структура формул для полубесконечного тела (24), пластины (25), плоского слоя (26), и стержня (28) одинакова: в первый сомножитель входит плотность мощности(q, q/s, q/F), далее в показатель входят безразмерная продольная координата (критерий Пекле Ре) vx/(2a), характеризующая асимметричность температурного поля, и функция, зависящая от безразмерного радиус-вектора vR/(2a), vr/(2a) или v|х|/(2а)). Влияние поверхностной теплоотдачи характеризуется безразмерным критерием. Однотипность структуры формул и определяет однотипность температурных полей в различных телах.

Периоды теплонасыщения и выравнивания температур

Период теплонасыщения. Наступление предельного состояния процесса проявляется в том, что связанное с источником тепла подвижное температурное поле не изменяется со временем и только перемещается вместе с источником. Такое предельное состояние процесса наступает не сразу. В момент зажигания тепло дуги вводится в холодный металл, начальная температура которого постоянна во всем объеме изделия. По мере горения дуги тепло постепенно прогревает металл изделия. При этом размеры (длина, ширина, глубина) прилегающей к источнику нагретой зоны увеличиваются. Когда размеры зоны, нагретой выше определенной температуры Т т, перестают увеличиваться, считают, что процесс распространения тепла в этой зоне практически достиг предельного установившегося состояния. В более удаленных от источника тепла зонах предельное состояние наступает позже, чем в зонах, близких к источнику.

При действии неподвижного источника постоянной мощности процесс распространения тепла стремится к предельному стационарному состоянию, при котором температуры во всем поле остаются постоянными. При действии источника постоянной мощности, перемещающегося прямолинейно с постоянной скоростью, процесс распространения тепла стремится к предельному квазистационарному состоянию, при котором температуры остаются постоянными в подвижной системе координат, связанной с источником тепла.

Пусть в начальный момент t=0 тело находится при постоянной температуре, принимаемой за ноль отсчета. В момент t=0 начинает действовать источник постоянной мощности q, неподвижный (v=0) или перемещающийся прямолинейно с постоянной скоростью v. Период процесса распространения тепла от момента t=0 начала действия источника до установления предельного состояния (стационарного или квазистационарного) называется периодом теплонасыщения. В этом периоде температура T(t) любой точки тела, отнесенной к координатной системе, связанной с источником тепла (т. е. подвижной или неподвижной, в зависимости от того, движется или неподвижен источник), возрастает от начальной температуры Т(0)=0 до температуры предельного состояния, наступающей теоретически при бесконечно длительном действии источника, .

Температуру Т(t) данной точки (x,y,z) в периоде теплонасыщения, т.е. при выражают в разобранных нами ранее случаях общие уравнения процесса распространения тепла: (23) -- при точечном источнике на поверхности полубесконечного тела; (25) -- при линейном источнике в пластине с теплоотдачей.

Для удобства расчета целесообразно представить температуру Т(t) в периоде теплонасыщения произведением температуры Т пр той же точки в предельном состоянии на коэффициент теплонасыщения для той же точки

Коэффициент теплонасыщения, очевидно, возрастает от нуля в начальный момент, до единицы в предельном состоянии, . Возрастание этого коэффициента со временем характеризует интенсивность процесса насыщения теплом данной точки тела.

Коэффициенты теплонасыщения для трех основных схем процесса распространения тепла при сварке представлены на рис. 19 в зависимости от безразмерных критериев ф пропорциональных времени t, и критериев с, пропорциональных расстоянию рассматриваемой точки от источника тепла.

Для пространственного процесса распространения тепла точечного источника постоянной мощности, перемещающегося со скоростью v по поверхности полубесконечного тела (рис. 13), коэффициент теплонасыщения представлен в зависимости от безразмерных критериев расстояния и времени (рис.19, а)

Для плоского процесса распространения тепла от линейного источника постоянной мощности, перемещающегося со скоростью v в пластине толщиной s с теплоотдачей, характеризующейся коэффициентом, коэфициент теплонасыщения представлен в зависимости от безразмерных Критериев расстояния и времени (рис.19, б)

Для линейного процесса распространения тепла от плоского источника постоянной мощности, перемещающегося со скоростью v в стержне с поперечным сечением F и периметром р с теплоотдачей, характеризующейся коэффициентом, коэффициент теплонасыщения представлен в зависимости от безразмерных критериев расстояния и времени (рис. 19, в)

С возрастанием продолжительности t действия сосредоточенного источника температура во всем объеме нагреваемого тела возрастает, стремясь к предельной температуре. Чем ближе расположена к источнику рассматриваемая точка нагреваемого тела, т. е. чем меньше ее расстояние R, r или x; от источника, тем раньше начинает возрастать температура, тем быстрее она возрастает и тем раньше приближается к предельной. Таким образом, в близкой к источнику области, нагреваемой до высоких температур, период теплонасыщения заканчивается раньше, чем в удаленной области низких температур. В пластине плоский поток тепла, распространяющегося от источника, более стеснен, чем пространственный поток в полубесконечном теле, а линейный поток в стержне - более, чем плоский поток в пластине. Чем более стеснен поток тепла, тем медленнее насыщается теплом область, находящаяся на данном расстоянии от источника тепла, т. е. тем ниже коэффициент ш при данных значениях и.

Период выравнивания температуры. По окончании действия сосредоточенного источника введенное. им тепло продолжает распространяться по металлу изделия вследствие теплопроводности. Неравномерное распределение температуры, поддерживавшееся сосредоточенным источником, по прекращении его действия выравнивается, и температура нагретой области стремится к средней температуре тела. Период процесса распространения тепла, начиная от момента t=t k прекращения действия источника, называется периодом выравнивания температуры.

Пусть сосредоточенный источник постоянной мощности q= const неподвижный или перемещающийся прямолинейно с постоянной скоростью v=const начинает действовать в момент t=0 и прекращает действие в момент t=t k (рис.20). Изменение температуры определенной точки нагреваемого тела в периоде теплонасыщения и предельного состояния, вычисленное по уравнению (29), представлено схематически кривыми (1), (2) (рис. 20).

Расчет процесса распространения тепла в периоде выравнивания температуры по окончании действия источника постоянной мощности приведем к уже известному расчету процесса теплонасыщения, применяя фиктивные источники и стоки тепла. Рассчитаем температуру в процессе выравнивания в некоторый момент времени t (рис.20). Пусть источник, в действительности отключенный в момент t k , продолжает фиктивно действовать и дальше. Для моделирования этой ситуации в продолжение к действительному источнику, существовавшему в течение времени t k , введем фиктивный источник той же мощности (рис. 20). Для того, чтобы не изменить теплового состояния тела, введем в момент t k фиктивный сток тепла мощностью (-q), приложенный к тем же участкам тела, что и фиктивный источник (+q) Очевидно, что действия равных по мощности источника и стока, приложенных одновременно к тем же участкам тела, взаимно уничтожаются. Таким образом, введение фиктивного источника и фиктивного стока не изменяет теплового состояния тела, которое в действительности по прекращении в момент t k действия источника более тепла не получает.

Температуру Т в (t) в периоде выравнивания после прекращения в момент t k действия источника постоянной мощности q можно рассматривать как алгебраическую сумму температуры Т (t) от продолжающего действовать источника q и температуры Т (t k --t) от начавшего действовать в момент t k стока тепла (-q) (рис. 20).

Заметим, что обе температуры в правой части уравнения (30), как температуры в периоде теплонасыщения при непрерывном действии источника q, можно выразить по уравнению (29) через температуру предельного состояния Т пр и соответствующие коэффициенты теплонасыщения

Таким образом, расчет температуры в момент t в периоде выравнивания сводится к расчету температур в периоде теплонасыщения.

Для трех основных схем процесса распространения тепла при сварке удобно вести расчет, пользуясь графиками рис. 19. При расчете процесса распространения тепла в периоде выравнивания после прекращения действия подвижного сосредоточенного источника следует иметь в виду, что фиктивные источник и сток движутся так же, как двигался бы и действительный источник, а с ними перемещается и начало подвижной системы координат.

Понравилась статья? Поделиться с друзьями: