Как найти наименьшее общее кратное чисел. Наибольший общий делитель (НОД) – определение, примеры и свойства

Чтобы научиться находить наибольший общий делитель двух или нескольких чисел, необходимо разобраться с тем, что представляют из себя натуральные, простые и сложные числа.


Натуральным называется любое число, которое используется при подсчете целых предметов.


Если натуральное число можно разделить только на само себя и единицу, то его называют простым.


Все натуральные числа можно разделить на себя и единицу, однако единственным четным простым числом является 2, все остальные можно поделить на двойку. Поэтому простыми могут быть только нечетные числа.


Простых чисел достаточно много, полного списка их не существует. Для нахождения НОД удобно использовать специальные таблицы с такими числами.


Большинство натуральных чисел могут делиться не только на единицу, самих себя, но и на другие числа. Так, например, число 15 можно поделить еще на 3 и 5. Все их называют делителями числа 15.


Таким образом, делитель любого А - это число, на которое оно может быть разделено без остатка. Если у числа имеется более двух натуральных делителей, его называют составным.


У числа 30 можно выделить такие делители, как 1, 3, 5, 6, 15, 30.


Можно заметить, что 15 и 30 имеют одинаковые делители 1, 3, 5, 15. Наибольший общий делитель этих двух чисел - 15.


Таким образом, общим делителем чисел А и Б называется такое число, на которое можно поделить их нацело. Наибольшим можно считать максимальное общее число, на которое можно их разделить.


Для решения задач используется такая сокращенная надпись:


НОД (А; Б).


Например, НОД (15; 30) = 30.


Чтобы записать все делители натурального числа, применяется запись:


Д (15) = {1, 3, 5, 15}



НОД (9; 15) = 1


В данном примере у натуральных чисел имеется только один общий делитель. Их называют взаимно простыми, соответственно единица и является их наибольшим общим делителем.

Как найти наибольший общий делитель чисел

Чтобы найти НОД нескольких чисел, нужно:


Найти все делители каждого натурального числа по отдельности, то есть разложить их на множители (простые числа);


Выделить все одинаковые множители у данных чисел;


Перемножить их между собой.


Например, чтобы вычислить наибольший общий делитель чисел 30 и 56, нужно записать следующее:




Чтобы не путаться при , удобно записывать множители при помощи вертикальных столбиков. В левой части от черты нужно разместить делимое, а в правой - делитель. Под делимым следует указать получившееся частное.


Так, в правом столбце окажутся все нужные для решения множители.


Одинаковые делители (найденные множители) можно для удобства подчеркнуть. Их следует переписать и перемножить и записать наибольший общий делитель.





НОД (30; 56) = 2 * 5 = 10


Вот так просто на самом деле найти наибольший общий делитель чисел. Если немного потренироваться, делать это можно будет практически на автомате.

Сейчас и в дальнейшем мы будем подразумевать, что хотя бы одно из данных чисел отлично от нуля. Если все данные числа равны нулю, то их общим делителем является любое целое число, а так как целых чисел бесконечно много, то мы не можем говорить о наибольшем из них. Следовательно, нельзя говорить о наибольшем общем делителе чисел, каждое из которых равно нулю.

Теперь мы можем дать определение наибольшего общего делителя двух чисел.

Определение.

Наибольший общий делитель двух целых чисел – это наибольшее целое число, делящее два данных целых числа.

Для краткой записи наибольшего общего делителя часто используют аббревиатуру НОД – Наибольший Общий Делитель. Также наибольший общий делитель двух чисел a и b часто обозначают как НОД(a, b) .

Приведем пример наибольшего общего делителя (НОД) двух целых чисел. Наибольший общий делитель чисел 6 и −15 равен 3 . Обоснуем это. Запишем все делители числа шесть: ±6 , ±3 , ±1 , а делителями числа −15 являются числа ±15 , ±5 , ±3 и ±1 . Теперь можно найти все общие делители чисел 6 и −15 , это числа −3 , −1 , 1 и 3 . Так как −3<−1<1<3 , то 3 – это наибольший общий делитель чисел 6 и −15 . То есть, НОД(6, −15)=3 .

Определение наибольшего общего делителя трех и большего количества целых чисел аналогично определению НОД двух чисел.

Определение.

Наибольший общий делитель трех и большего количества целых чисел – это наибольшее целое число, делящее одновременно все данные числа.

Наибольший общий делитель n целых чисел a 1 , a 2 , …, a n мы будем обозначать как НОД(a 1 , a 2 , …, a n) . Если найдено значение b наибольшего общего делителя этих чисел, то можно записать НОД(a 1 , a 2 , …, a n)=b .

В качестве примера приведем НОД четырех целых чисел −8 , 52 , 16 и −12 , он равен 4 , то есть, НОД(−8, 52, 16, −12)=4 . Это можно проверить, записав все делители данных чисел, выбрав из них общие и определив наибольший общий делитель.

Отметим, что наибольший общий делитель целых чисел может быть равен одному из этих чисел. Это утверждение справедливо в том случае, если все данные числа делятся на одно из них (доказательство приведено в следующем пункте этой статьи). Например, НОД(15, 60, −45)=15 . Это действительно так, так как 15 делит и число 15 , и число 60 , и число −45 , и не существует общего делителя чисел 15 , 60 и −45 , который превосходит 15 .

Особый интерес представляют так называемые взаимно простые числа , - такие целые числа, наибольший общий делитель которых равен единице.

Свойства наибольшего общего делителя, алгоритм Евклида

Наибольший общий делитель обладает рядом характерных результатов, иными словами, рядом свойств. Сейчас мы перечислим основные свойства наибольшего общего делителя (НОД) , формулировать их мы будем в виде теорем и сразу приводить доказательства.

Все свойства наибольшего общего делителя мы будем формулировать для положительных целых чисел, при этом будем рассматривать лишь положительные делители этих чисел.

    Наибольший общий делитель чисел a и b равен наибольшему общему делителю чисел b и a , то есть, НОД(a, b)=НОД(a, b) .

    Это свойство НОД напрямую следует из определения наибольшего общего делителя.

    Если a делится на b , то множество общих делителей чисел a и b совпадает со множеством делителей числа b , в частности, НОД(a, b)=b .

    Доказательство.

    Любой общий делитель чисел a и b является делителем каждого из этих чисел, в том числе и числа b . С другой стороны, так как a кратно b , то любой делитель числа b является делителем и числа a в силу того, что делимость обладает свойством транзитивности, следовательно, любой делитель числа b является общим делителем чисел a и b . Этим доказано, что если a делится на b , то совокупность делителей чисел a и b совпадает с совокупностью делителей одного числа b . А так как наибольшим делителем числа b является само число b , то наибольший общий делитель чисел a и b также равен b , то есть, НОД(a, b)=b .

    В частности, если числа a и b равны, то НОД(a, b)=НОД(a, a)=НОД(b, b)=a=b . К примеру, НОД(132, 132)=132 .

    Доказанное свойство наибольшего делителя позволяет нам находить НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число. Например, НОД(8, 24)=8 , так как 24 кратно восьми.

    Если a=b·q+c , где a , b , c и q – целые числа, то множество общих делителей чисел a и b совпадает со множеством общих делителей чисел b и c , в частности, НОД(a, b)=НОД(b, c) .

    Обоснуем это свойство НОД.

    Так как имеет место равенство a=b·q+c , то всякий общий делитель чисел a и b делит также и c (это следует из свойств делимости). По этой же причине, всякий общий делитель чисел b и c делит a . Поэтому совокупность общих делителей чисел a и b совпадает с совокупностью общих делителей чисел b и c . В частности, должны совпадать и наибольшие из этих общих делителей, то есть, должно быть справедливо следующее равенство НОД(a, b)=НОД(b, c) .

    Сейчас мы сформулируем и докажем теорему, которая представляет собой алгоритм Евклида . Алгоритм Евклида позволяет находить НОД двух чисел (смотрите нахождение НОД по алгоритму Евклида). Более того алгоритм Евклида позволит нам доказать приведенные ниже свойства наибольшего общего делителя.

    Прежде чем дать формулировку теоремы, рекомендуем освежить в памяти теорему из раздела теории , которая утверждает, что делимое a может быть представлено в виде b·q+r , где b – делитель, q – некоторое целое число, называемое неполным частным, а r – целое число, удовлетворяющее условию , называемое остатком.

    Итак, пусть для двух ненулевых целых положительных чисел a и b справедлив ряд равенств

    заканчивающийся, когда r k+1 =0 (что неизбежно, так как b>r 1 >r 2 >r 3 , … - ряд убывающих целых чисел, и этот ряд не может содержать более чем конечное число положительных чисел), тогда r k – это наибольший общий делитель чисел a и b , то есть, r k =НОД(a, b) .

    Доказательство.

    Докажем сначала, что r k является общим делителем чисел a и b , после чего покажем, что r k не просто делитель, а наибольший общий делитель чисел a и b .

    Будем двигаться по записанным равенствам снизу вверх. Из последнего равенства можно сказать, что r k−1 делится на r k . Учитывая этот факт, а также предыдущее свойство НОД, предпоследнее равенство r k−2 =r k−1 ·q k +r k позволяет утверждать, что r k−2 делится на r k , так как и r k−1 делится на r k и r k делится на r k . По аналогии из третьего снизу равенства заключаем, что r k−3 делится на r k . И так далее. Из второго равенства получаем, что b делится на r k , а из первого равенства получаем, что a делится на r k . Следовательно, r k является общим делителем чисел a и b .

    Осталось доказать, что r k =НОД(a, b) . Для достаточно показать, что любой общий делитель чисел a и b (обозначим его r 0 ) делит r k .

    Будем двигаться по исходным равенствам сверху вниз. В силу предыдущего свойства из первого равенства следует, что r 1 делится на r 0 . Тогда из второго равенства получаем, что r 2 делится на r 0 . И так далее. Из последнего равенства получаем, что r k делится на r 0 . Таким образом, r k =НОД(a, b) .

    Из рассмотренного свойства наибольшего общего делителя следует, что множество общих делителей чисел a и b совпадает с множеством делителей наибольшего общего делителя этих чисел. Это следствие из алгоритма Евклида позволяет найти все общие делители двух чисел как делители НОД этих чисел.

    Пусть a и b – целые числа, одновременно не равные нулю, тогда существуют такие целые числа u 0 и v 0 , то справедливо равенство НОД(a, b)=a·u 0 +b·v 0 . Последнее равенство представляет собой линейное представление наибольшего общего делителя чисел a и b , это равенство называют соотношением Безу, а числа u 0 и v 0 – коэффициентами Безу.

    Доказательство.

    По алгоритму Евклида мы можем записать следующие равенства

    Из первого равенства имеем r 1 =a−b·q 1 , и, обозначив 1=s 1 и −q 1 =t 1 , это равенство примет вид r 1 =s 1 ·a+t 1 ·b , причем числа s 1 и t 1 - целые. Тогда из второго равенства получим r 2 =b−r 1 ·q 2 = b−(s 1 ·a+t 1 ·b)·q 2 =−s 1 ·q 2 ·a+(1−t 1 ·q 2)·b . Обозначив −s 1 ·q 2 =s 2 и 1−t 1 ·q 2 =t 2 , последнее равенство можно записать в виде r 2 =s 2 ·a+t 2 ·b , причем s 2 и t 2 – целые числа (так как сумма, разность и произведение целых чисел является целым числом). Аналогично из третьего равенства получим r 3 =s 3 ·a+t 3 ·b , из четвертого r 4 =s 4 ·a+t 4 ·b , и так далее. Наконец, r k =s k ·a+t k ·b , где s k и t k - целые. Так как r k =НОД(a, b) , и, обозначив s k =u 0 и t k =v 0 , получим линейное представление НОД требуемого вида: НОД(a, b)=a·u 0 +b·v 0 .

    Если m – любое натуральное число, то НОД(m·a, m·b)=m·НОД(a, b) .

    Обоснование этого свойства наибольшего общего делителя таково. Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД(m·a, m·b)=m·r k , а r k – это НОД(a, b) . Следовательно, НОД(m·a, m·b)=m·НОД(a, b) .

    На этом свойстве наибольшего общего делителя основан способ нахождения НОД с помощью разложения на простые множители .

    Пусть p – любой общий делитель чисел a и b , тогда НОД(a:p, b:p)=НОД(a, b):p , в частности, если p=НОД(a, b) имеем НОД(a:НОД(a, b), b:НОД(a, b))=1 , то есть, числа a:НОД(a, b) и b:НОД(a, b) - взаимно простые.

    Так как a=p·(a:p) и b=p·(b:p) , и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД(a, b)=НОД(p·(a:p), p·(b:p))= p·НОД(a:p, b:p) , откуда и следует доказываемое равенство.

    Только что доказанное свойство наибольшего общего делителя лежит в основе .

    Сейчас озвучим свойство НОД, которое сводит задачу нахождения наибольшего общего делителя трех и большего количества чисел к последовательному отысканию НОД двух чисел.

    Наибольший общий делитель чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

    Доказательство базируется на следствии из алгоритма Евклида. Общие делители чисел a 1 и a 2 совпадают с делителями d 2 . Тогда общие делители чисел a 1 , a 2 и a 3 совпадают с общими делителями чисел d 2 и a 3 , следовательно, совпадают с делителями d 3 . Общие делители чисел a 1 , a 2 , a 3 и a 4 совпадают с общими делителями d 3 и a 4 , следовательно, совпадают с делителями d 4 . И так далее. Наконец, общие делители чисел a 1 , a 2 , …, a k совпадают с делителями d k . А так как наибольшим делителем числа d k является само число d k , то НОД(a 1 , a 2 , …, a k)=d k .

На этом закончим обзор основных свойств наибольшего общего делителя.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 5806

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена , так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД .
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК .

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2
Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.
Пример: определить, делится ли на 2 число 34938 .
Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3
Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.
Пример: определить, делится ли число 34938 на 3.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5
Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.
Пример: определить, делится ли число 34938 на 5.
Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9
Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.
Пример: определить, делится ли число 34938 на 9.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36) :

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7 , 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252 .

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c) .

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3 , 32 = 1·2·2·2·2·2 , 36 = 1·2·2·3·3 .
  2. Найдём обшие множители: 1, 2 и 2 .
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96 .
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , НОД = 1·2·2·3 = 12 .
  6. НОК(12, 32, 36) = 96·36 / 12 = 288 .

Признаки делимости натуральных чисел.

Числа, делящиеся без остатка на 2, называются четными .

Числа, которые не делятся без остатка на 2, называются нечетными .

Признак делимости на 2

Если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если запись числа оканчивается нечетной цифрой, то это число не делится без остатка на 2.

Например, числа 6 0 , 30 8 , 8 4 делятся без остатка на 2, а числа 5 1 , 8 5 , 16 7 не делятся без остатка на 2.

Признак делимости на 3

Если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.

Например, выясним, делится ли на 3 число 2772825. Для этого подсчитаем сумму цифр этого числа: 2+7+7+2+8+2+5 = 33 - делится на 3. Значит, число 2772825 делится на 3.

Признак делимости на 5

Если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.

Например, числа 1 5 , 3 0 , 176 5 , 47530 0 делятся без остатка на 5, а числа 1 7 , 37 8 , 9 1 не делятся.

Признак делимости на 9

Если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.

Например, выясним, делится ли на 9 число 5402070. Для этого подсчитаем сумму цифр этого числа: 5+4+0+2+0+7+0 = 16 - не делится на 9. Значит, число 5402070 не делится на 9.

Признак делимости на 10

Если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10.

Например, числа 4 0 , 17 0 , 1409 0 делятся без остатка на 10, а числа 1 7 , 9 3 , 1430 7 - не делятся.

Правило нахождения наибольшего общего делителя (НОД).

Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;

3) найти произведение оставшихся множителей.

Пример. Найдем НОД (48;36). Воспользуемся правилом.

1. Разложим числа 48 и 36 на простые множители.

48 = 2 · 2 · 2 · 2 · 3

36 = 2 · 2 · 3 · 3

2. Из множителей, входящих в разложение числа 48 вычеркнем те, которые не входят в разложение числа 36.

48 = 2 · 2 · 2 · 2 · 3

Остаются множители 2, 2 и 3.

3. Перемножим оставшиеся множители и получим 12. Это число и является наибольшим общим делителем чисел 48 и 36.

НОД (48;36) = 2 · 2 · 3 = 12.

Правило нахождения наименьшего общего кратного (НОК).

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:

1) разложить их на простые множители;

2) выписать множители, входящие в разложение одного из чисел;

3) добавить к ним недостающие множители из разложений остальных чисел;

4) найти произведение получившихся множителей.

Пример. Найдем НОК (75;60). Воспользуемся правилом.

1. Разложим числа 75 и 60 на простые множители.

75 = 3 · 5 · 5

60 = 2 · 2 · 3 · 3

2. Выпишем множители, входящие в разложение числа 75: 3, 5, 5.

НОК (75;60) = 3 · 5 · 5 · …

3. Добавим к ним недостающие множители из разложения числа 60, т.е. 2, 2.

НОК (75;60) = 3 · 5 · 5 · 2 · 2

4. Найдем произведение получившихся множителей

НОК (75;60) = 3 · 5 · 5 · 2 · 2 = 300.

Эта статья посвящена такому вопросу, как нахождение наибольшего общего делителя. Сначала мы объясним, что это такое, и приведем несколько примеров, введем определения наибольшего общего делителя 2 , 3 и более чисел, после чего остановимся на общих свойствах данного понятия и докажем их.

Yandex.RTB R-A-339285-1

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Определение 1

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Пример 1

Вот примеры такого делителя: тройка будет общим делителем для чисел - 12 и 9 , поскольку верны равенства 9 = 3 · 3 и − 12 = 3 · (− 4) . У чисел 3 и - 12 есть и другие общие делители, такие, как 1 , − 1 и − 3 . Возьмем другой пример. У четырех целых чисел 3 , − 11 , − 8 и 19 будет два общих делителя: 1 и - 1 .

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Также отметим, что если у нас есть общий для нескольких чисел делитель b , то те же числа можно разделить и на противоположное число, то есть на - b . В принципе, мы можем взять лишь положительные делители, тогда все общие делители также будут больше 0 . Такой подход также можно использовать, однако совсем игнорировать отрицательные числа не следует.

Что такое наибольший общий делитель (НОД)

Согласно свойствам делимости, если b является делителем целого числа a , которое не равно 0, то модуль числа b не может быть больше, чем модуль a , следовательно, любое число, не равное 0 , имеет конечное число делителей. Значит, число общих делителей нескольких целых чисел, хотя бы одно из которых отличается от нуля, также будет конечным, и из всего их множества мы всегда можем выделить самое большое число (ранее мы уже говорили о понятии наибольшего и наименьшего целого числа, советуем вам повторить данный материал).

В дальнейших рассуждениях мы будем считать, что хотя бы одно из множества чисел, для которых нужно найти наибольший общий делитель, будет отлично от 0 . Если они все равны 0 , то их делителем может быть любое целое число, а поскольку их бесконечно много, выбрать наибольшее мы не сможем. Иначе говоря, найти наибольший общий делитель для множества чисел, равных 0 , нельзя.

Переходим к формулировке основного определения.

Определение 2

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

На письме наибольший общий делитель чаще всего обозначается аббревиатурой НОД. Для двух чисел его можно записать как НОД (a , b) .

Пример 2

Какой можно привести пример НОД для двух целых чисел? Например, для 6 и - 15 это будет 3 . Обоснуем это. Сначала запишем все делители шести: ± 6 , ± 3 , ± 1 , а потом все делители пятнадцати: ± 15 , ± 5 , ± 3 и ± 1 . После этого мы выбираем общие: это − 3 , − 1 , 1 и 3 . Из них надо выбрать самое большое число. Это и будет 3 .

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Определение 3

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Для чисел a 1 , a 2 , … , a n делитель удобно обозначать как НОД (a 1 , a 2 , … , a n) . Само значение делителя записывается как НОД (a 1 , a 2 , … , a n) = b .

Пример 3

Приведем примеры наибольшего общего делителя нескольких целых чисел: 12 , - 8 , 52 , 16 . Он будет равен четырем, значит, мы можем записать, что НОД (12 , - 8 , 52 , 16) = 4 .

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Пример 4

Так, наибольший общий делитель чисел 60 , 15 и - 45 равен 15 , поскольку пятнадцать делится не только на 60 и - 45 , но и на само себя, и большего делителя для всех этих чисел не существует.

Особый случай составляют взаимно простые числа. Они представляют собой целые числа с наибольшим общим делителем, равным 1 .

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Определение 4

Числа a и b имеют наибольший общий делитель, равный НОД для b и a , то есть НОД (a , b) = НОД (b , a) . Перемена мест чисел не влияет на конечный результат.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Определение 5

Если число a можно разделить на число b , то множество общих делителей этих двух чисел будет аналогично множеству делителей числа b , то есть НОД (a , b) = b .

Докажем это утверждение.

Доказательство 1

Если у чисел a и b есть общие делители, то на них можно разделить любое из них. В то же время если a будет кратным b, то любой делитель b будет делителем и для a , поскольку у делимости есть такое свойство, как транзитивность. Значит, любой делитель b будет общим для чисел a и b . Это доказывает, что если мы можем разделить a на b , то множество всех делителей обоих чисел совпадет с множеством делителей одного числа b . А поскольку наибольший делитель любого числа есть само это число, то наибольший общий делитель чисел a и b будет также равен b , т.е. НОД (a , b) = b . Если a = b , то НОД (a , b) = НОД (a , a) = НОД (b , b) = a = b , например, НОД (132 , 132) = 132 .

Используя это свойство, мы можем найти наибольший общий делитель двух чисел, если одно из них можно разделить на другое. Такой делитель равен одному из этих двух чисел, на которое можно разделить второе число. К примеру, НОД (8 , 24) = 8 , так как 24 есть число, кратное восьми.

Определение 6 Доказательство 2

Попробуем доказать данное свойство. У нас изначально есть равенство a = b · q + c , и любой общий делитель a и b будет делить и c , что объясняется соответствующим свойством делимости. Поэтому любой общий делитель b и c будет делить a . Значит, множество общих делителей a и b совпадет с множеством делителей b и c , в том числе и наибольшие из них, значит, равенство НОД (a , b) = НОД (b , c) справедливо.

Определение 7

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Перед тем, как сформулировать свойство, советуем вам повторить теорему, которую мы доказывали в статье о делении с остатком. Согласно ей, делимое число a можно представить в виде b · q + r , причем b здесь является делителем, q – некоторым целым числом (его также называют неполным частным), а r – остатком, который удовлетворяет условию 0 ≤ r ≤ b .

Допустим, у нас есть два целых числа больше 0 , для которых будут справедливы следующие равенства:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Эти равенства заканчиваются тогда, когда r k + 1 становится равен 0 . Это случится обязательно, поскольку последовательность b > r 1 > r 2 > r 3 , … представляет собой ряд убывающих целых чисел, который может включать в себя только конечное их количество. Значит, r k является наибольшим общим делителем a и b , то есть, r k = НОД (a , b) .

В первую очередь нам надо доказать, что r k – это общий делитель чисел a и b , а после этого – то, что r k является не просто делителем, а именно наибольшим общим делителем двух данных чисел.

Просмотрим список равенств, приведенный выше, снизу вверх. Согласно последнему равенству,
r k − 1 можно разделить на r k . Исходя из этого факта, а также предыдущего доказанного свойства наибольшего общего делителя, можно утверждать, что r k − 2 можно разделить на r k , так как
r k − 1 делится на r k и r k делится на r k .

Третье снизу равенство позволяет нам сделать вывод, что r k − 3 можно разделить на r k , и т.д. Второе снизу – что b делится на r k , а первое – что a делится на r k . Из всего этого заключаем, что r k – общий делитель a и b .

Теперь докажем, что r k = НОД (a , b) . Что для этого нужно сделать? Показать, что любой общий делитель a и b будет делить r k . Обозначим его r 0 .

Просмотрим тот же список равенств, но уже сверху вниз. Исходя из предыдущего свойства, можно заключить, что r 1 делится на r 0 , значит, согласно второму равенству r 2 делится на r 0 . Идем по всем равенствам вниз и из последнего делаем вывод, что r k делится на r 0 . Следовательно, r k = НОД (a , b) .

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Определение 8

Если a и b являются целыми числами, не равными 0 , то должны существовать два других целых числа u 0 и v 0 , при которых будет справедливым равенство НОД (a , b) = a · u 0 + b · v 0 .

Равенство, приведенное в формулировке свойства, является линейным представлением наибольшего общего делителя a и b . Оно носит название соотношения Безу, а числа u 0 и v 0 называются коэффициентами Безу.

Доказательство 3

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Первое равенство говорит нам о том, что r 1 = a − b · q 1 . Обозначим 1 = s 1 и − q 1 = t 1 и перепишем данное равенство в виде r 1 = s 1 · a + t 1 · b . Здесь числа s 1 и t 1 будут целыми. Второе равенство позволяет сделать вывод, что r 2 = b − r 1 · q 2 = b − (s 1 · a + t 1 · b) · q 2 = − s 1 · q 2 · a + (1 − t 1 · q 2) · b . Обозначим − s 1 · q 2 = s 2 и 1 − t 1 · q 2 = t 2 и перепишем равенство как r 2 = s 2 · a + t 2 · b , где s 2 и t 2 также будут целыми. Это объясняется тем, что сумма целых чисел, их произведение и разность также представляют собой целые числа. Точно таким же образом получаем из третьего равенства r 3 = s 3 · a + t 3 · b , из следующего r 4 = s 4 · a + t 4 · b и т.д. В конце заключаем, что r k = s k · a + t k ·b при целых s k и t k . Поскольку r k = НОД (a , b) , обозначим s k = u 0 и t k = v 0 , В итоге мы можем получить линейное представление НОД в требуемом виде: НОД (a , b) = a · u 0 + b · v 0 .

Определение 9

НОД (m · a , m · b) = m · НОД (a , b) при любом натуральном значении m .

Доказательство 4

Обосновать это свойство можно так. Умножим на число m обе стороны каждого равенства в алгоритме Евклида и получим, что НОД (m · a , m · b) = m · r k , а r k – это НОД (a , b) . Значит, НОД (m · a , m · b) = m ·НОД (a , b) . Именно это свойство наибольшего общего делителя используется при нахождении НОД методом разложения на простые множители.

Определение 10

Если у чисел a и b есть общий делитель p , то НОД (a: p , b: p) = НОД (a , b) : p . В случае, когда p = НОД (a , b) получим НОД (a: НОД (a , b) , b: НОД (a , b) = 1 , следовательно, числа a: НОД (a , b) и b: НОД (a , b) являются взаимно простыми.

Поскольку a = p · (a: p) и b = p · (b: p) , то, основываясь на предыдущем свойстве, можно создать равенства вида НОД (a , b) = НОД (p · (a: p) , p · (b: p)) = p ·НОД (a: p , b: p) , среди которых и будет доказательство данного свойства. Это утверждение мы используем, когда приводим обыкновенные дроби к несократимому виду.

Определение 11

Наибольшим общим делителем a 1 , a 2 , … , a k будет число d k , которое можно найти, последовательно вычисляя НОД (a 1 , a 2) = d 2 , НОД (d 2 , a 3) = d 3 , НОД (d 3 , a 4) = d 4 , … , НОД (d k - 1 , a k) = d k .

Это свойство полезно при нахождении наибольшего общего делителя трех и более чисел. С помощью него можно свести это действие к операциям с двумя числами. Его основой является следствие из алгоритма Евклида: если множество общих делителей a 1 , a 2 и a 3 совпадает с множеством d 2 и a 3 , то оно совпадет и с делителями d 3 . Делители чисел a 1 , a 2 , a 3 и a 4 совпадут с делителями d 3 , значит, они совпадут и с делителями d 4 , и т.д. В конце мы получим, что общие делители чисел a 1 , a 2 , … , a k совпадут с делителями d k , а поскольку наибольшим делителем числа d k будет само это число, то НОД (a 1 , a 2 , … , a k) = d k .

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понравилась статья? Поделиться с друзьями: