Магнитное поле кругового тока. Магнитное поле в центре кругового проводника с током

Рассмотрим поле, создаваемое током I , текущим по тонкому проводу, имеющему форму окружности радиуса R .

Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы перпендикулярны плоскостям, проходящим через соответствующие и . Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий вектор направлен вдоль оси кругового тока. Каждый из векторов вносит вклад равный , а взаимно уничтожаются. Но , , а т.к. угол между и α – прямой, то тогда получим

,

Подставив в и, проинтегрировав по всему контуру , получим выражение для нахождения магнитной индукции круговоготока :

,

При , получим магнитную индукцию в центре кругового тока :

Заметим, что в числителе – магнитный момент контура. Тогда, на большом расстоянии от контура, при , магнитную индукцию можно рассчитать по формуле:

Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.



Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .


Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10 -7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.

Движение электрического заряда означает перемещение присущего заряду электрического силового поля. Кинетика потенциального электрического поля проявляется в форме возникающего вихревого магнитного поля охватывающего ток. Для обнаружения магнитного поля в качестве индикатора может служить ферромагнитный стержень, обладающий свободой вращения (например, магнитная стрелка).

Подобно электрическому полю, магнитное также характеризуют напряженностью , однако определение этого понятия связано уже не с зарядом, как это было в случае потенциального электрического поля, а с током, т.е. движением электричества.

Направленное поступательное перемещение зарядов и вихревое магнитное поле, отображающие движение электрического поля этих зарядов, представляет собой две стороны единого электромагнитного процесса, называемое электрическим током.

Экспериментальное исследование магнитного поля токов провели в 1820 г. французские физики Ж. Био и Ф. Савар, а П. Лаплас теоретически обобщил результаты этих измерений, получив в итоге формулу (для магнитного поля в вакууме):

, (1)

где 1/4 – коэффициент пропорциональности, зависящий от выбора единиц измерения;I – сила тока; – вектор, совпадающий с элементарным участком тока (рис. 3); – вектор, проведенный от элемента тока в ту точку, в которой определяется

Как видно из выражения (1), вектор
направлен перпендикулярно плоскости, проходящей через и точку, в которой вычисляется поле, причем так, что вращение вокруг в направлении
связано с правилом правого винта (см. рис. 3). Для модуля dH можно написать следующее выражение:

, (2)

где  – угол между векторами и .

Р

ассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющим форму окружности радиусомR (круговой ток). Определим напряженность магнитного поля в центра кругового тока (рис. 4). Каждый элемент тока создает в центре напряженность, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение
сводится к сложению их модулей.

По формуле рассчитаем dH для случая   /2:

. (3)

Проинтегрируем это выражение по всему контуру, учитывая, что r R :

H
. (4)

Если контур состоит из n витков, то напряженность магнитного поля в центре его будет равна

H . (5)

Описание аппаратуры и метода измерений

Целью данной работы является определение величиныH 0. Для измерения H 0 применяется прибор, называемый тангенс- гальванометром, который состоит из кольцеобразного проводника или очень плоской катушки большого радиуса. Плоскость катушки расположена вертикально, и вращением около вертикальной оси ей можно придать любое положение.

В центре катушки укреплен компас с очень короткой магнитной стрелкой. Рис. 5 дает сечение прибора горизонтальной плоскостью проходящей через центр витка, где NS – направление магнитного меридиана, AD – сечение катушки горизонтальной плоскостью, ab – магнитная стрелка компаса.

При отсутствии тока в катушке на стрелку abдействует только магнитное поле Земли и стрелка устанавливается по направлению магнитного меридиана NS.

Если по катушке пропускать ток, то стрелка отклоняется на угол . Теперь магнитная стрелка abнаходится под действием двух полей: магнитного поля Земли () и магнитного поля, созданного током ().

В условиях совмещения витка с плоскостью меридиана векторы и взаимно перпендикулярны, тогда (см. рис. 5):

;
. (6)

Так как длина магнитной стрелки ab мала по сравнению с радиусом витка, то в пределах стрелки H можно считать постоянной (поле однородно) и равным ее значению в центре катушки, определяемого формулой (5).

Решая совместно уравнения (5) и (6), получим:

. (7)

Этой расчетной формулой пользуются для определения H 0 в данной работе.

Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиуса R (круговой ток). Определим магнитную индукцию в центре кругового тока (рис. 47.1).

Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение сводится к сложению их модулей. По формуле (42.4)

Проинтегрируем это выражение по всему контуру:

Выражение в скобках равно модулю дипольного магнитного момента (см. (46.5)).

Следовательно, магнитная индукция в центре кругового тока имеет величину

Из рис. 47.1 видно, что направление вектора В совпадает с направлением положительной нормали к контуру, т. е. с направлением вёктора Поэтому формулу (47.1) можно написать в векторном виде:

Теперь найдем В на оси кругового тока на расстоянии от центра контура (рис. 47.2). Векторы перпендикулярны к плоскостям, проходящим через соответствующий элемент и точку, в которой мы ищем поле. Следовательно, они образуют симметричный конический веер (рис. 47.2, б). Из соображений симметрии можно заключить, что результирующий вектор В направлен вдоль оси контура. Каждый из составляющих векторов вносит в результирующий вектор вклад равный по модулю Угол а между и b прямой, поэтому

Проинтегрировав по всему контуру и заменив на получим

Эта формула определяет величину магнитной индукции на оси кругового тока. Приняв во внимание, что векторы В и имеют одинаковое направление, можно написать формулу (47.3) в векторном виде:

Это выражение не зависит от знака г. Следовательно, в точках оси, симметричных относительно центра тока, В имеет одинаковую величину и направление.

При формула (47.4) переходит, как и должно быть, в формулу (47.2) для магнитной индукции в центре кругового тока.

На больших расстояниях от контура в знаменателе можно пренебречь по сравнению с Тогда формула (47.4) принимает вид

аналогичный выражению (9.9) для напряженности электрического поля на оси диполя.

Расчет, выходящий за рамки данной книги, дает, что любой системе токов или движущихся зарядов, локализованной в ограниченной части пространства, можно приписать магнитный дипольный момент (ср. с дипольным электрическим моментом системы зарядов). Магнитное поле такой системы на расстояниях, больших по сравнению с ее размерами, определяется через по таким же формулам, по каким определяется через дипольный электрический момент поле системы зарядов на больших расстояниях (см. § 10). В частности, поле плоского контура любой формы на больших расстояниях имеет вид

где - расстояние от контура до данной точки, - угол между направлением вектора и направлением от контура в данную точку поля (ср. с формулой (9.7)). При формула (47.6) дает для модуля вектора В такое же значение, как и формула (47.5).

На рис. 47.3 изображены линии магнитной индукции поля кругового тока. Показаны лишь линии, лежашие в одной из плоскостей, Проходящей через ось тока. Подобная же картина имеет место в любой из этих плоскостей.

Из всего сказанного в предыдущем и в данном параграфах вытекает, что дипольный магнитный момент является весьма важной характеристикой контура с током. Этой характеристикой определяется как поле, создаваемое контуром, так и поведение контура во внешнем магнитном поле.

Значение магнитной индукции для любого проводника определяется законом Био - Савара - Лапласа.

-в векторной форме, (15.6)

- в скалярной форме. (15.7)

Вектор всегда перпендикулярен плоскости, построенной на векторах и . С помощью закона Био - Савара - Лапласа рассчитаем магнитную индукцию поля прямого, кругового и соленоидального токов.

Вывод формулы напряжённости магнитного поля прямого тока (рис. 15.9; рис. 15.10) .

Применим формулу
для вычисления полей простейших токов. Рассмотрим поле, создаваемое током, текущим по бесконечному прямому проводу (Рис. 15.9) .Все dBв данной точке имеют одинаковое направление. Поэтому сложение векторов dBможно заменить сложением их модулей. Точка, для которой мы вычисляем магнитную индукцию, находится на расстоянии b от провода. Из рисунка 15.9 видно, что:

Подставим эти значения в формулу магнитной индукции:

.

Угол для всех элементов бесконечно прямого тока изменяется в пределах от 0 до . Следовательно:

.

Таким образом, магнитная индукция поля прямого тока определяется формулой: . (15.8)

Для того, чтобы получить напряженность магнитного поля, необходимо разделить правую часть формулы (15.8) на :

. (15.9)

Вывод формулы напряжённости магнитного поля кругового тока (рис. 15.11).



Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности (круговой ток). Определим магнитную индукцию кругового тока

Рассмотрим индукции , создаваемых двумя элементами контура dl 1 и dl 2 . Т. к. угол между r и dl равен 90°, то sin 90°=1.

Закон Био - Савара - Лапласа для двух элементов:

Выбрав dl 1 =dl 2 и принимая, что r 1 =r 2 , получим:

Проинтегрируем это выражение по всему контуру и заменим r на получим:

(15.10)

В частности, при x=0 имеем:

(15.11)

магнитная индукция в центре кругового тока

Напряженность магнитного поля в центре кругового тока равна:

(15.12)

Формула для расчета напряженности магнитного поля кругового тока на его оси принимает вид:

(15.13)

Вывод формулы напряжённости магнитного поля соленоидального тока.

Соленоид представляет собой тонкий провод, навитый плотно, виток к витку, на цилиндрический каркас. В отношении создаваемого им поля соленоид эквивалентен системе одинаковых круговых токов с общей прямой осью. Бесконечно длинный соленоид симметричен относительно любой перпендикулярной к его оси плоскости. Взятые попарно симметричные относительно такой плоскости витки создают поле, магнитная индукция которого перпендикулярна к плоскости. Следовательно, в любой точке внутри и вне соленоида вектор может иметь лишь направление, параллельное оси.

Возьмем прямоугольный контур 1-2-3-4. Циркуляцию вектора по этому контуру можно представить следующим образом:

Из четырех интегралов, стоящих в правой части, второй и четвертый равны нулю, так как вектор перпендикулярен к участкам контура, по которым они берутся.

Взяв участок 3-4 на большом расстоянии от соленоида(где поле заведомо должно быть очень слабым), третьим слагаемым можно пренебречь. Следовательно, можно утверждать, что:

Здесь В - магнитная индукция поля в тех точках, где располагается отрезок 1-2, -длина этого отрезка.

Если отрезок 1-2 проходит внутри соленоида на любом расстоянии от его оси, контур охватывает суммарный ток , где - число витков соленоида, приходящееся на единицу его длинны, - сила тока в соленоиде. Поэтому согласно:

Откуда: (15.14)

а напряженность магнитного поля соленоидального тока равна:

(15.15)

Отметим, что полученный нами результат не зависит от того, на каком расстоянии от оси (но внутри соленоида) располагается отрезок 1-2. Если этот отрезок располагается вне соленоида, то охватываемый контуром ток равен нулю, вследствие чего:

.

Откуда В=0. Таким образом, вне бесконечного длинного соленоида магнитная индукция равна нулю, внутри - всюду одинакова и имеет величину, определяемую формулой (15.14). По этой причине в учении о магнетизме бесконечно длинный соленоид играет такую же роль, как плоский конденсатор в учении об электричестве. В обоих случаях поле однородно и полностью заключено внутри конденсатора (электрическое) и внутри соленоида(магнитное).

Произведение называется числом ампер - витков на метр.

Тесты к лекции №15

Тест 15.1.Магнитная индукция поля, создаваемого отрезком бесконечно тонкого прямолинейного проводника, вычисляется по формуле…

£

£

£

£

Тест 15.2.Магнитная индукция в центре кругового тока определяется по формуле…

£

£

£

£

Тест 15.3.Форма существования материи, обладающая свойством передавать магнитное взаимодействие.

£ магнитное поле

£ магнитная индукция

£ пробный контур

£ магнитный момент

Тест 15.4.Дайте определение пробного контура.

£ контур, вносящий помехи в исходное поле.

£ контур, усиливающий исходное поле.

£ контур, ослабляющий исходное поле.

£ контур, который не создает заметных искажений исходного поля.

Тест 15.5.Формула выражает:

£ вектор магнитной индукции

£ напряженность магнитного поля

£ магнитную индукцию

£ магнитный момент

Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток. Сила Ампера. Работа по перемещению проводника с током в магнитном поле. Сила Лоренца. Определение удельного заряда электрона

16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток

16.2. Сила Ампера

16.3. Работа по перемещению проводника с током в магнитном поле

16.4. Сила Лоренца

16.5. Определение удельного заряда электрона

Понравилась статья? Поделиться с друзьями: