Энергия атома радиуса электронной орбиты. Постулаты Бора и объяснение происхождения линейчатых спектров. Атом водорода по Бору

Теория основана на хорошо известном факте «превращения» фотона с энергий 1 МэВ в пару электрон – позитрон. Необходимо предупредить, что имеется замечательное совпадение: энергия фотона почти точно соответствует существующему определению классического радиуса электрона:

R e = ξ (e 0 2 / m e c 2) = 2,81794334·10 –15 [m ],

а энергия m e c 2 ≈ 0,5MeV . Совпадение порождает естественное подозрение на использование автором тавтологии, не имеющей физического смысла. Но это не так в силу опытного факта превращения фотона в пару электрон – позитрон. В статье получена электрическая безмассовая структура физического вакуума с дипольным расстоянием r e = 1,3987632·10 –15 [m ] и предельно возможная деформация диполя Δr rb = 1,02072687·10 –17 [m ], удвоенная сумма которых точно равна классическому радиусу электрона. Причина в том, что энергия фотона «красной границы» для вакуума в 2 раза больше энергии масс электрона и позитрона.

Другим важным обстоятельством гипотезы о природе гравитации есть то, что причиной притяжения всех тел друг к другу является слабая разность элементарных зарядов (+) и (–) в диполе. По законам индукции Фарадея и сил Кулона все тела притягиваются друг к другу поляризуемым зарядом дипольной структуры среды, а свойства инерции заключается в свойстве среды сопротивляться любым ускорениям материальных тел.

Эта исключительно важная среда существования вещества в природе позволила опубликовать статью , которую можно принять как частную программу развития физических знаний об устройстве природы.

Модель атома водорода по Н. Бору

Обратимся к истокам начал квантовой механики, положенным Н. Бором (1885...1962) в форме модели атома водорода, которая получила блестящее подтверждение в спектральных исследованиях излучения водорода. Кратко напомним основные положения работы Н. Бора.

Энергия Е электрона в атоме, исходя из классической физики, складывается из кинетической энергии Т и потенциальной электрической энергии U : Е = Т + U . Отметим, что в область микромира вторглась классическая физика, которой в настоящее время приписывается множество «грехов». Потенциальная энергия U = (–e 0)V ; заряд ядра Ze 0 ; Для кругового движения:

Полная энергия отрицательна. Разрешенные радиусы:

Отметим интересное обстоятельство появления отрицательной энергии электронов в атомах. Это понятие возникло исключительно из-за отрицательного знака заряда электрона, который носит условный характер, определенный человеком. Указанные формулы написаны в системе СГС. Перевод формул в менее запутанную систему СИ дает следующее написание:

где r 1 – радиус первой орбиты в атоме водорода, n = 1, 2, 3, ... – квантовые числа, соответствующие номерам стационарных орбит у водорода.

Везде в формулах оказалась электрическая константа

ξ = 8,98755179·10 9 [m 3 kg ·a –2 s –4 ],

которая есть обратная величина привычной электрической проницаемости вакуума.

Итак, модель атома Бора пришла в противоречие с существовавшей тогда классической физикой.

  1. Согласно классике, электрон, двигающийся с центростремительным ускорением, обязан излучать электромагнитную энергию.
  2. В атоме существуют стационарные круговые орбиты, на которых не происходит излучение электронов, и они не падают на ядро в результате расхода энергии.

Сделан вывод, что рожденная таким образом квантовая механика противоречит классической физике в микро мире. Сложилась странная ситуация, в результате которой появился барьер в физике, изучающей единую и неделимую природу. Квантовая механика находит правила устройства микромира и не отвечает на такие вопросы, – что мешает излучению электронов, находящихся на стационарных орбитах? Излучение или поглощение электромагнитных волн электронами в атомах происходит только при их переходах между стационарными орбитами.

Посмотрим, что дает среда существования вещества классической физике и квантовой механике – физический вакуум, имеющий электрическую структуру, погруженную в магнитный (массовый) континуум. В основных чертах эта среда отвечает механической модели, использованной гениальным Максвеллом при выводе своих формул, безотказно работающих до сего времени. Важным элементом понимания сущности инерции является ее возникновение как сопротивление дипольной среды ускоренному движению:

f = b Δr a ~ ma ,

где b = ξ (e 0 2 / Δr rb r e 2) = 1,155406·10 19 [kg ·s –2 ] – электрическая упругость диполя структуры вакуума, r a – деформация диполя структуры под действием силы инерции тела массы m и ускорения а . Знак пропорциональности «~» использован из понимания того, что тело взаимодействует не с одним диполем структуры, а с некоторым кластером или доменом структуры вакуума. Для того, чтобы устранить кажущееся противоречие между классической физиков и КМ, необходим логический вывод: на стационарных орбитах электроны движутся без инерции . Нет центробежной и нет центростремительной сил, создающих классическое ускорение. Существуют такие орбиты или пути движения частиц (электронов) в структуре вакуума, которые не обладают сопротивлением ускоренному движению. В этом отношении круговое движение электронов, обладающих зарядом (электрической напряженностью) и собственным магнитным моментом, а также магнитным моментом вращательного движения, подобно вращению генератора Рощина – Година , в котором все указанные элементы существуют. На опыте генератора происходило уменьшение инерции и веса ротора.

Перейдем к параметрам вакуума. Наиболее важным является то, что константа Планка полностью определяется основными параметрами структуры среды:

h = 2π e 0 2 α –1 √(ξ / η) [J ·s ].

Здесь появилась магнитная константа вакуума

η = 1·10 7 [m –1 kg ·a 2 s 2 ]

как обратная величина магнитной проницаемости и постоянная тонкой структуры

α –1 = 137,035999.

Подстановка h в формулу для первой орбиты водорода дает:

r 1 = (1/η)·(e 0 2 α –2 / m e ).

Орбита зависит от элементарного заряда структуры среды, ее магнитной константы и наиболее фундаментальной величины нашей Вселенной – постоянной тонкой структуры. Массу электрона можно заменить на другие параметры среды:

m e = (1/η)·[e 0 2 / 2(r e + Δr rb )];

в результате получим, что:

r 1 = 2α –2 (r e + Δr rb ) = 5,29177245·10 –11 [m ].

Радиус первой орбиты определяется только величиной постоянной тонкой структуры и основными метрическими характеристиками среды. Очевидно, совпадение R e = 2(r e + Δr rb ), однако могут быть отклонения величины Δr от Δr rb , так как их полная идентичность не установлена. Выше было дано замечание о совпадении классического радиуса с выводами из равенства энергий фотона и электрона – позитрона.

При каких условиях сопротивление среды ускорению равно нулю? Возможно только одно: в условии инерции f = b Δr a ~ ma отсутствует ускорение и Δr a = 0. Это означает, что движение частиц вообще и электрона в частности может происходить так, что частица не взаимодействует с решеткой вакуума, двигаясь строго по существующему точному кругу или сфере зарядов одного знака (для электрона «–»). При этом нет ни гравитации, ни инерции. Гравитация и инерция возникают только при движении частиц и макро тел с пересечением электронной структуры вакуума. Для частиц, двигающихся от заряда к заряду одинакового знака, в общем случае характерна криволинейная траектория в отличие от движения частиц по избранным круговым траекториям. Круговые траектории располагаются на сфере, проходящей через заряды диполей одного знака. Задача нахождения сфер в решетке вакуума разрешима на основе обычной геометрии в пространстве. Криволинейные пути частиц ассоциируются с волнами Де Бройля λ = h / mV и наиболее простой формой траектории будет винтообразное движение с малой амплитудой.

А́том (от др.-греч. ἄτομος - неделимый) - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.

Электрон является самой лёгкой из составляющих атом частиц с массой 9,11·10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами. Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726·10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929·10−27 кг). При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5·10−15 м, хотя размеры этих частиц определены плохо.

Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии, где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Атом водорода - физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решения. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.

В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощенно рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.

В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неё спектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома.

Результаты расчётов Бора были подтверждены в 1925-1926 годах строгим квантово-механическим анализом, основанном на уравнении Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра выводится в аналитической форме. Оно описывает не только уровни энергии электрона и спектр излучения,

Квантование энергии электрона в атоме Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения (латинское "дискретус" означает разделенный, прерывистый), говорят, что они квантуются.

В 1900 г. немецкий физик М. Планк, изучавший тепловое излучение твердых тел, пришел к выводу, что электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно ΔE = hν,

где ΔE - энергия кванта, Дж; ν - частота, с-1; h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·10−34 Дж·с.

Кванты энергии впоследствии назвали фотонами.

Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии.

Существование дискретных энергетических уровней является фундаментальным свойством атомов (так же как и молекул, и атомных ядер).

Попробуем применить известные нам законы физики, чтобы представить себе устройство атома, объясняющее дискретность его энергетических уровней.

Рассмотрим простейший из атомов - атом водорода. Порядковый номер водорода в периодической системе элементов равен единице, следовательно, водородный атом состоит из положительного ядра, заряд которого равен , и одного электрона. Между ядром и электроном действует сила притяжения зарядов. Наличие этой силы обеспечивает радиальное (центростремительное) ускорение, благодаря чему легкий электрон вращается вокруг тяжелого ядра по круговой или эллиптической орбите точно так же, как планета вращается вокруг Солнца под влиянием силы тяготения. Различным возможным состояниям атома соответствует, таким образом, различие в размерах (и форме) орбиты электрона, вращающегося вокруг ядра.

Энергия электрона в атоме слагается из кинетической энергии движения по орбите и потенциальной энергии в электрическом поле ядра. Можно показать (см. в конце параграфа), что энергия электрона на круговой орбите, а следовательно, и энергия атома в целом зависят от радиуса орбиты: меньшему радиусу орбиты соответствует меньшая энергия атома. Но, как мы видели в § 204, энергия атома может принимать не любые, а только определенные избранные значения. Так как энергия определяется радиусом орбиты, то каждому энергетическому уровню атома отвечает орбита определенного избранного радиуса.

Картина возможных круговых орбит электрона в атоме водорода изображена на рис. 367. Основному энергетическому уровню атома соответствует орбита наименьшего радиуса.

Рис. 367. Возможные орбиты электрона в атоме водорода: радиус орбит возрастает пропорционально , т.е. в отношении и т.д.

Нормально электрон находится на этой орбите. При сообщении достаточно большой порции энергии электрон переходит на другой энергетический уровень, т. е. «перескакивает» на одну из внешних орбит. Как указывалось, в таком возбужденном состоянии атом неустойчив. Через некоторое время электрон переходит на более низкий уровень, т. е. «перескакивает» на орбиту меньшего радиуса. Переход электрона с дальней орбиты на ближнюю сопровождается испусканием светового кванта.

Итак, из ядерной модели атома и дискретности его энергетических уровней вытекает существование избранных, «разрешенных», орбит электрона в атоме. Встает вопрос, почему электрон не может вращаться вокруг ядра по орбите произвольного радиуса. В чем физическое различие дозволенных и недозволенных орбит?

Законы механики и электричества, знакомые нам из предыдущих разделов учебника (см. тома I, II), не дают на эти вопросы никакого ответа. С точки зрения этих законов все орбиты совершенно равноправны. Существование выделенных орбит противоречит этим законам.

Не менее разительным противоречием известным нам законам физики является устойчивость атома (в основном состоянии). Мы знаем, что всякий заряд, движущийся с ускорением, излучает электромагнитные волны. Электромагнитное излучение уносите собой энергию. В атоме электрон движется с большой скоростью по орбите малого радиуса и, следовательно, обладает огромным центростремительным ускорением. Согласно известным нам законам электрон должен терять энергию, излучая ее в виде электромагнитных волн. Но, как было указано выше, если электрон теряет энергию, радиус его орбиты уменьшается. Следовательно, электрон не может вращаться по орбите постоянного радиуса. Расчеты показывают, что в результате уменьшения радиуса орбиты из-за излучения электрон должен был бы упасть на ядро за стомиллионную долю секунды. Этот вывод резко противоречит нашему ежедневному опыту, который свидетельствует об устойчивости атомов.

Итак, существует противоречие между данными о строении атома, полученными из эксперимента, и между основными законами механики и электричества, также найденными на опыте.

Но не следует забывать, что упомянутые законы найдены и проверены в экспериментах с телами, содержащими очень большое количество электронов, большое количество атомов. Мы не имеем основания считать, что эти законы применимы к движению отдельного электрона в атоме. Более того, расхождение между поведением электрона в атоме и законами классической физики указывает на неприменимость этих законов к атомным явлениям (см. также § 210).

Выше мы изложили так называемую планетарную модель атома, т.е. представление об электронах, вращающихся по разрешенным орбитам вокруг атомного ядра. При обосновании планетарной модели мы пользовались законами классической физики. Но, как уже отмечалось и как мы увидим подробнее в § 210, движение электрона в атоме относится к области явлений, в которой классическая механика неприменима. Неудивительно поэтому, что более глубокое изучение «микромира» показало неполноту, грубую приближенность планетарной модели; действительная картина атома сложнее. Все же эта модель отражает правильно многие основные свойства атома, и поэтому, несмотря на приближенность, ею иногда пользуются.

Рассмотрим зависимость энергии атома водорода от радиуса электронной орбиты. Кинетическую энергию движения электрона по орбите радиуса мы определим из того условия, чту центростремительное ускорение обеспечивается силой кулонного притяжения зарядов (в системе СИ ). Приравнивая ускорение создаваемое этой силой, центростремительному ускорению , найдем, что кинетическая энергии электрона обратно пропорциональна радиусу орбиты, т.е. .

Выделим две орбиты радиуса и . Кинетическая энергия вращения электрона на второй орбите больше, чем на первой на величину .

Если орбиты недалеко отстоят одна от другой, то и . Поэтому в знаменателе можно пренебречь величиной , и разница кинетических энергий будет приближенно равна .

Потенциальная энергия электрона, напротив, больше на первой, далекой орбите, ибо для удаления электрона от ряда нужно совершить работу против сил электрического притяжения, действующих между электроном и ядром; эта работа идет на увеличение потенциальной энергии.

Пусть электрон переводится с ближней орбиты на дальнюю по радиальному пути. Длина пути равна . Электрическая сила вдоль этого пути непостоянна по модулю. Но так как орбиты близки одна к другой , можно для приближенного вычисления работы использовать значение силы на среднем расстоянии электрона от ядра, равном . По закону Кулона сила есть , а работа на пути , равная приросту потенциальной энергии, будет равна .

Таким образом, при переходе электрона с дальней орбиты на ближнюю уменьшение его потенциальной энергии равно удвоенному приросту кинетической энергии. Мы доказали эту теорему для близких орбит, расстояние между которыми удовлетворяет условию . Суммируя изменения энергии электрона при переходах между последовательными парами близких орбит, убеждаемся, что теорема справедлива и для сколь угодно удаленных орбит.

Рассмотрим теперь бесконечно далекую орбиту, т. е. . Потенциальную энергию электрона на ней примем за начало отсчета потенциальной энергии, т. е. положим . Кинетическая энергия обращается при в нуль; при переходе с орбиты на конечную орбиту радиуса она возрастет на величину . Потенциальная энергия уменьшится на вдвое большую величину , т. е.

.(206.1)

Полная энергия электрона равна, следовательно, ; она тем меньше (знак минус!), чем меньше радиус орбиты.

Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса

где n - квантовые числа, т – масса электрона, - его скорость, r - радиус орбиты. (Рассуждения, которые привели Бора к этому предположению мы опустим.)

С помощью этого правила квантования можно найти радиусы круговых стационарных орбит водорода и водородоподобных систем: ионов атомов с одним оставшимся электроном (Н, Не + , Li + + , …) и соответствующие им энергии. Пусть заряд ядра водородоподобной системы равен e . Масса ядра значительно больше массы электрона, поэтому ядро при движении электрона можно считать неподвижным. Следуя Бору, будем предполагать, что электрон движется вокруг ядра по окружности радиуса r .

Согласно 2-му закону Ньютона

(3.12.9)

Решая совместно (3.12.8) и (3.12.9), можно найти радиусы электронных орбит и их скорости на этих орбитах:

. (3.12.10)

Таким образом, радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода (его обозначают обычно и называют первым Боровским радиусом )

нм (3.12.11)

Внутренняя энергия атома складывается из кинетической энергии электрона (ядро полагают неподвижным) и потенциальной энергии взаимодействия электрона с ядром. С учетом (3.12.10) получим:

. (3.12.12)

При переходе атома водорода (Z =1) из состояния в состояние излучается фотон

. (3.12.13)

Тогда частота испущенного света равна

, (3.12.14)

Что соответствует обобщенной формуле Бальмера, если постоянная Ридберга определяется . (3.12.15)

Расчет по этой формуле хорошо согласуется с экспериментально определенным значением.

Схема энергетических уровней (разрешенных значений энергии) атома водорода приведена на рис.3.12.4. Там же показаны возможные переходы, сопровождающиеся излучением фотонов определенной частоты.



Лекция 3.13.

Волновые свойства частиц вещества.

Гипотеза де-Бройля. Волны де-Бройля.

Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.

Если с такой частицей связана какая-то волна, можно ожидать, что она распространяется в направлении скорости υ частицы. О природе этой волны ничего определенного де-Бройлем не было высказало. Не будем и мы пока выяснять их природу, хотя сразу же подчеркнем, что эти волны не электромагнитные. Они имеют, как мы увидим далее, специфическую природу, для которой нет аналога в классической физике.

Итак, де-Бройль высказал гипотезу, что соотношение для импульса p=ћω/c , относящееся к фотонам, имеет универсальный характер, т. е. частицам можно сопоставить волну, длина которой

Эта формула получила название формулы де-Бройля , а λ – дебройлевской длины волны частицы с импульсом р .

Де-Бройль также предположил, что пучок частиц, падающих на двойную щель, должен за ними интерферировать.

Вторым, независимым от формулы (3.13.1), соотношением является связь между энергией Е частицы и частотой ω дебройлевской волны:

В принципе энергия Е определена всегда с точностью до прибавления произвольной постоянной (в отличие от ΔЕ ), следовательно, частота ω является принципиально ненаблюдаемой величиной (в отличие от дебройлевской длины волны).

С частотой ω и волновым числом k связаны две скорости - фазовая υ ф и групповая u :

(3.13.3)

Умножив числитель и знаменатель обоих выражений на ћ с учетом (3.13.1) и (3.13.2), получим, ограничившись рассмотрением только нерелятивистского случая, т.е. полагая E = p 2 /2m (кинетическая энергия):

(3.13.4)

Отсюда видно, что групповая скорость равна скорости частицы, т. е. является принципиально наблюдаемой величиной, в отличие от υ ф ‑ из-за неоднозначности Е .

Из первой формулы (3.13.4) следует, что фазовая скорость дебройлевских волн

(3.13.5)

т. е. зависит от частоты ω, а значит дебройлевские волны обладают дисперсией даже в вакууме. Далее будет показано, что в соответствии с современной физической интерпретацией фазовая скорость дебройлевских волн имеет чисто символическое значение, поскольку эта интерпретация относит их к числу принципиально ненаблюдаемых величин. Впрочем, сказанное видно и сразу, так как Е в (3.13.5) определена, как уже говорилось, с точностью до прибавления произвольной постоянной.

Установление того факта, что согласно (3.13.4) групповая скорость дебройлевских волн равна скорости частицы, сыграло в свое время важную роль в развитии принципиальных основ квантовой физики, и в первую очередь в физической интерпретации дебройлевских волн. Сначала была сделана попытка рассматривать частицы как волновые пакеты весьма малой протяженности и таким образом решить парадокс двойственности свойств частиц. Однако подобная интерпретация оказалась ошибочной, так как все составляющие пакет гармонические волны распространяются с разными фазовыми скоростями. При наличии большой дисперсии, свойственной дебройлевским волнам даже в вакууме, волновой пакет «расплывается». Для частиц с массой порядка массы электрона пакет расплывается практически мгновенно, в то время как частица является стабильным образованием.

Таким образом, представление частицы в виде волнового пакета оказалось несостоятельным. Проблема двойственности свойств частиц требовала иного подхода к своему решению.

Вернемся к гипотезе де-Бройля. Выясним, в каких явлениях могут проявиться волновые свойства частиц, если они, эти свойства, действительно существуют. Мы знаем, что независимо от физической природы волн - это интерференция и дифракция. Непосредственно наблюдаемой величиной в них является длина волны. Во всех случаях дебройлевская длина волны определяется формулой (3.13.1). Проведем с помощью нее некоторые оценки.

Прежде всего, убедимся, что гипотеза де-Бройля не противоречит понятиям макроскопической физики. Возьмем в качестве макроскопического объекта, например, пылинку, считая, что ее масса m = 1мг и скорость V = 1 мкм/с. Соответствующая ей дебройлевская длина волны

(3.13.6)

Т. е. даже у такого небольшого макроскопического объекта как пылинка дебройлевская длина волны оказывается неизмеримо меньше размеров самого объекта. В таких условиях никакие волновые свойства, конечно, проявить себя не могут в условиях доступных измерению размеров.

Иначе обстоит дело, например, у электрона с кинетической энергией K и импульсом . Его дебройлевская длина волны

(3.13.7)

где K должно быть измерено в электрон-вольтах (эВ). При K = 150 эВ дебройлевская длина волны электрона равна согласно (3.13.7) λ = 0,1нм. Такой же порядок величины имеет постоянная кристаллической решетки. Поэтому, аналогично тому, как в случае рентгеновских лучей, кристаллическая структура может быть подходящей решеткой для получения дифракции дебройлевских волн электронов. Однако гипотеза де-Бройля представлялась настолько нереальной, что довольно долго не подвергалась экспериментальной проверке.

Экспериментально гипотеза де-Бройля была подтверждена в опытах Дэвиссона и Джермера (1927г.). Идея их опытов заключалась в следующем. Если пучок электронов обладает волновыми свойствами, то можно ожидать, даже не зная механизма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентгеновских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаружения дифракционных максимумов (если таковые есть) измерялись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опыте использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.3.13. Если его повернуть вокруг вертикальной оси в Рис.3.13.1

положение, соответствующее рисунку, то в этом положении

сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215нм. Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50 0 и ускоряющем напряжении V = 54B наблюдался особенно отчётливый максимум отраженных Рис.3.13.2.

электронов, полярная диаграмма которых показала на рис.3.13.2.Этот максимум можно истолковать как интерференционный максимум первого порядка от плоской дифракционной решетки с указанным выше периодом в соответствии с формулой

что видно из рис.3.13.3. На этом рисунке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Период d может быть измерен независимо, например, по дифракции рентгеновских лучей. Рис.3.13.3.

Вычисленная по формуле (3.13.7) дебройлевская длина волны для V = 54B равна 0,167нм. Соответствующая же длина волны, найденная из формулы (3.13.8), равна 0,165нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным подтверждением гипотезы де-Бройля.

Другими опытами, подтверждающим гипотезу де-Бройля, были опыты Томсона и Тартаковского. В этих опытах пучок электронов пропускался через поликристаллическую фольгу (по методу Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, расположенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате падения электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести постоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная картина сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (десятки кэВ), П.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проделаны и также полностью подтвердили гипотезу де-Бройля в применении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что волновые свойства являются универсальным свойством всех частиц. Они не обусловлены какими-то особенностями внутреннего строения той или иной частицы, а отражают их общий закон движения.

Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возникает естественный вопрос: наблюдаемые волновые свойства выражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке, и каждый рассеянный электрон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны попадали в различные точки фотопластинки совершенно беспорядочным на первый взгляд образом (рис.3.13.4а ). Между тем при достаточно длительной экспозиции на фотопластинке возникала дифракционная картина (рис.3.13.4б ), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойствами обладают и отдельные частицы.

Таким образом, мы имеем дело с микрообъектами, которые обладают одновременно как корпускулярными, так и волно-

выми свойствами. Это позволяет нам в дальнейшем говорить

об электронах, но выводы, к которым мы придем, имеют Рис.3.13.4.

общий смысл и в равной степени применимы к любым частицам.

Парадоксальное поведение микрочастиц.

Рассмотренные в предыдущем параграфе эксперименты вынуждают констатировать, что перед нами один из загадочнейших парадоксов: что означает утверждение «электрон - это одновременно частица и волна »?

Попытаемся разобраться в этом вопросе с помощью мысленного эксперимента, аналогичного опыту Юнга по изучению интерференции света (фотонов) от двух щелей. После прохождения пучка электронов через две щели на экране образуется система максимумов и минимумов, положение которых можно рассчитать по формулам волновой оптики, если каждому электрону сопоставить дебройлевскую волну.

В явлении интерференции от двух щелей таятся сама суть квантовой теории, поэтому уделим этому вопросу особое внимание.

Если мы имеем дело с фотонами, то парадокс (частица - волна) можно устранить, предположив, что фотон в силу своей специфичности расщепляется на две части (на щелях), которые затем интерферируют.

А электроны? Они ведь никогда не расщепляются - это установлено совершенно достоверно. Электрон может пройти либо через щель 1, либо через щель 2 (рис.3.13.5). Следовательно, распределение их на экране Э должно быть суммой распределений 1 и 2 (рис.3.13.5а ) - оно показано пунктирной кривой. Рис.13.13.5.

Хотя логика в этих рассуждениях безупречна, такое распределение не осуществляется. Вместо этого мы наблюдаем совершенно иное распределение (рис.3.13.5б ).

Не есть ли это крушение чистой логики и здравого смысла? Ведь все выглядит так, как если бы 100 + 100 = 0 (в точке P). В самом деле, когда открыта или щель 1 или щель 2, то в точку P приходит, скажем, по 100 электронов в секунду, а если открыты обе щели, то ни одного!..

Более того, если сначала открыть щель 1, а потом постепенно открывать щель 2, увеличивая ее ширину, то по здравому смыслу число электронов, приходящих в точку P ежесекундно, должно расти от 100 до 200. В действительности же - от 100 до нуля.

Если подобную процедуру повторить, регистрируя частицы, например, в точке O (см. рис.3.13.5б ), то возникает не менее парадоксальный результат. По мере открывания щели 2 (при открытой щели 1) число частиц в точке O растет не до 200 в секунду, как следовало бы ожидать, а до 400!

Как открывание щели 2 может повлиять на электроны, которые, казалось бы, проходят через щель 1? Т. е. дело обстоит так, что каждый электрон, проходя через какую-то щель, «чувствует» и соседнюю щель, корректируя свое поведение. Или подобно волне проходит сразу через обе щели (!?). Ведь иначе интерференционная картина не может возникнуть. Попытка все же определить, через какую щель проходит тот или иной электрон, приводит к разрушению интерференционной картины, но это уже совсем другой вопрос.

Какой же вывод? Единственный способ «объяснения», этих парадоксальных результатов заключается в создании математического формализма, совместимого с полученными результатами и всегда правильно предсказывающего наблюдаемые явления. Причем, разумеется, этот формализм должен быть внутренне непротиворечивым.

И такой формализм был создан. Он ставит в соответствие каждой частице некоторую комплексную пси-функцию Ψ(r , t ). Формально она обладает свойствами классических волн, поэтому ее часто называют волновой функцией . Поведение свободной равномерно движущейся в определенном направлении частицы описывает плоская волна де-Бройля

Но более подробно об этой функции, ее физическом смысле и уравнении, которое управляет ее поведением в пространстве и времени, речь пойдет в следующей лекции.

Возвращаясь к поведению электронов при прохождении через две щели, мы должны признать: тот факт, что в принципе нельзя ответить на вопрос, через какую щель проходит электрон (не разрушая интерференционной картины), несовместим с представлением о траектории. Таким образом, электронам, вообще говоря, нельзя приписать траектории .

Однако при определенных условиях, а именно когда дебройлевская длина волны микрочастицы становится очень малой и может оказаться много меньше, например, расстояния между щелями или атомных размеров, понятие траектории снова приобретает смысл. Рассмотрим этот вопрос более подробно и сформулируем более корректно условия, при которых можно пользоваться классической теорией.

Принцип неопределенности

В классической физике исчерпывающее описание состояния частицы определяется динамическими параметрами, такими как координаты, импульс, момент импульса, энергия и др. Однако реальное поведение микрочастиц показывает, что существует принципиальный предел точности, с которой подобные переменные могут быть указаны и измерены.

Глубокий анализ причин существования этого предела, который называют принципом неопределенности , провел В. Гейзенберг (1927г.). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей .

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Существуют пары величин, которые не могут быть одновременно определены точно.

Наиболее важными являются два соотношения неопределенностей.

Первое из них ограничивает точности одновременного измерения координат и соответствующих проекций импульса частицы. Для проекции, например, на ось х оно выглядит так:

Второе соотношение устанавливает неопределенность измерения энергии, ΔE , за данный промежуток времени Δt :

Поясним смысл этих двух соотношений. Первое из них утверждает, что если положение частицы, например, по оси х известно с неопределенностью Δx , то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью Δp= ћ x . Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса - по другой: величины x и p y , y и p x и т. д. могут иметь одновременно точные значения.

Согласно второму соотношению (3.13.11) для измерения энергии с погрешностью ΔЕ необходимо время, не меньшее, чем Δt =ћ E . Примером может служить «размытие» энергетических уровней водородоподобных систем (кроме основного состояния). Это связано с тем, что время жизни во всех возбужденных состояниях этих систем порядка 10 -8 с. Размытие же уровней приводит к уширению спектральных линий (естественное уширение), которое действительно наблюдается. Сказанное относится и к любой нестабильной системе. Если время жизни ее до распада порядка τ, то из-за конечности этого времени энергия системы имеет неустранимую неопределенность, не меньшую, чем ΔE≈ ћ /τ.

Укажем еще пары величин, которые не могут быть одновременно точно определены. Это любые две проекции момента импульса частицы. Поэтому не существует состояния, в котором бы все три и даже какие-либо две из трех проекций момента импульса имели определенные значения.

Обсудим более подробно смысл и возможности соотношения Δx ·Δp x ≥ћ . Прежде всего, обратим внимание на то, что оно определяет принципиальный предел неопределенностей Δx и Δp x , с которыми состояние частицы можно характеризовать классически, т.е. координатой x и проекцией импульса p x . Чем точнее x , тем с меньшей точностью, возможно установить p x , и наоборот.

Подчеркнем, что истинный смысл соотношения (3.13.10) отражает тот факт, что в природе объективно не существует состояний частицы с точно определенными значениями обеих переменных, x и p х. Вместе с тем мы вынуждены, поскольку измерения проводятся с помощью макроскопических приборов, приписывать частицам не свойственные им классические переменные. Издержки такого подхода и выражают соотношения неопределенностей.

После того, как выяснилась необходимость описывать поведение частиц волновыми функциями, соотношения неопределенностей возникают естественным образом - как математическое следствие теории.

Считая соотношение неопределенностей (3.13.10) универсальным, оценим, как бы оно сказалось на движении макроскопического тела. Возьмем очень маленький шарик массы m = 1мг. Определим, например, с помощью микроскопа его положение с погрешностью Δx≈ 10 -5 см (она обусловлена разрешающей способностью микроскопа). Тогда неопределенность скорости шарика Δυ = Δp /m≈ (ћ x )/m ~ 10 -19 см/с. Такая величина недоступна никакому измерению, а потому и отступление от классического описания совершенно несущественно. Другими словами, даже для такого маленького (но макроскопического) шарика понятие траектории применимо с высокой степенью точности.

Иначе ведет себя электрон в атоме. Грубая оценка показывает, что неопределенность скорости электрона, движущегося по боровской орбите атома водорода, сравнима с самой скоростью: Δυ ≈ υ. При таком положении представление о движении электрона по классической орбите теряет всякий смысл. И вообще, при движении микрочастиц в очень малых областях пространства понятие траектории оказывается несостоятельным .

Вместе с тем, при определенных условиях движение даже микрочастиц может рассматриваться классически, т. е. как движение по траектории. Так происходит, например, при движении заряженных частиц в электромагнитных полях (в электронно-лучевых трубках, ускорителях и др.). Эти движения можно рассматривать классически, поскольку для них ограничения, обусловленные соотношением неопределенностей, пренебрежимо малы по сравнению с самими величинами (координатами и импульсом).

Опыт со щелью . Соотношение неопределенностей (3.13.10) проявляет себя при любой попытке точного измерения положения или импульса микрочастицы. И каждый раз мы приходим к «неутешительному» результату: уточнение положения частицы приводит к увеличению неопределенности импульса, и наоборот. В качестве иллюстрации такой ситуации рассмотрим следующий пример.

Попытаемся определить координату x свободно движущейся с импульсом p частицы, поставив на ее пути перпендикулярно направлению движения экран со щелью шириной b (рис.3.13.6). До прохождения частицы через щель ее проекция импульса p х имеет точное значение: p x = 0. Это значит, что Δ p x = 0, но

координата x частицы является совершенно неопреде ленной согласно (3.13.10): мы не можем сказать, Рис.3.13.6.

пройдет ли данная частица через щель.

Если частица пройдет сквозь щель, то в плоскости щели координата x будет зарегистрирована с неопределенностью Δx ≈ b . При этом вследствие дифракции с наибольшей вероятностью частица будет двигаться в пределах угла 2θ, где θ - угол, соответствующий первому дифракционному минимуму. Он определяется условием, при котором разность хода волн от обоих краев щели будет равна λ (это доказывается в волновой оптике):

В результате дифракции возникает неопределенность значения p х - проекции импульса, разброс которого

Учитывая, что b ≈ Δх и p = 2πћ /λ., получим из двух предыдущих выражений:

что согласуется по порядку величины с (3.13.10).

Таким образом, попытка определить координату x частицы, действительно, привела к появлению неопределенности Δp в импульсе частицы.

Анализ многих ситуаций, связанных с измерениями, показывает, что измерения в квантовой области принципиально отличаются от классических измерений. В отличие от последних, в квантовой физике существует естественный предел точности измерений. Он в самой природе квантовых объектов и не может быть преодолен никаким совершенствованием приборов и методов измерений. Соотношение (3.13.10) и устанавливает один из таких пределов. Взаимодействие между микрочастицей и макроскопическим измерительным прибором нельзя сделать сколь угодно малым. Измерение, например координаты частицы, неизбежно приводит к принципиально неустранимому и неконтролируемому искажению состояния микрочастицы, а значит и к неопределенности в значении импульса.

Некоторые выводы .

Соотношение неопределенностей (3.13.10) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

1. Невозможно состояние, в котором частица находилась бы в состоянии покоя.

2. При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

3. Часто теряет смысл деление полной энергии E частицы (как квантового объекта) на потенциальную U и кинетическую K . В самом деле, первая, т. е. U , зависит от координат, а вторая - от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Лекция 3.14.

Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водорода.

Волновая функция. Уравнение Шрёдингера.

В развитие идеи де-Бройля о волновых свойствах вещества Э.Шрёдингер получил в 1926г. свое знаменитое уравнение. Он сопоставил движению микрочастицы комплексную функцию координат и времени, которую назвал волновой функцией и обозначил греческой буквой . Поэтому ее называют также пси-функцией. Она характеризует состояние микрочастицы. Физический смысл водновой функции состоит в следующем: квадрат ее модуля определяет вероятность нахождения частицы в промежутке между точками х и х+dх в момент времени t. Точнее величина является плотностью вероятности или плотностью распределения координат частицы.

Из такого определения следуют свойства волновой функции. Она должна быть однозначной, непрерывной, гладкой (производная не терпит разрыва), конечной. Кроме того, она должна подчиняться условию нормировки .

Основная задача физики микрочастиц (волновой или квантовой механики) как раз и состоит в нахождении волновых функций и связанных с ними физических следствий в самых разнообразных условиях. Для ее решения служит волновое уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. (Заметим, что одним из решений этого уравнения в свободном пространстве должна быть плоская волна де-Бройля (3.13.9).)

Особое значение в квантовой механике имеют стационарные состояния. Это такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Оказывается, что в стационарных состояниях

, (3.14.1)

где частота постоянна, а функция не зависит от времени. Эта независящая от времени часть волновой функции может быть найдена из уравнения Шрёдингера для стационарных состояний

, (3.14.2)

где т - масса частицы, Е – ее энергия, - функция, которая в случае стационарных состояний имеет смысл потенциальной энергии частицы.

Энергия частицы Е входит в уравнение в качестве параметра. В теории дифференциальных уравнений доказывается, что уравнения вида (3.14.2) имеют решения, удовлетворяющие стандартным условиям, не при любых значениях параметра Е, а лишь при некоторых избранных значениях. Эти избранные значения называются собственными значениями энергии. Решения (значения волновой функции), соответствующие собственным значениям Е , называются собственными функциями. Совокупность собственных значений называется спектром величины (энергии). Если эта совокупность образует дискретную последовательность, спектр называется дискретным, если же – непрерывную последовательность, спектр непрерывный или сплошной.

Таким образом, из основных положений квантовой механики без каких-либо дополнительных предположений следует квантование (дискретность) энергии .

Частица в бесконечно глубокой потенциальной яме.

Рассмотрим квантование энергии на простейшем примере движения частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Пусть частица может двигаться только вдоль оси х, где движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l. Потенциальная энергия рана нулю при 0≤ х ≤ l и обращается в бесконечность при х < 0 и x > l .

Поскольку волновая функция в этом случае будет зависеть только от х , уравнение Шрёдингера будет иметь вид

. (3.14.3)

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружить там частицу, а, следовательно, и волновая функция в этих областях равна нулю. Из условия непрерывности следует, что и на границах ямы она равна нулю

. (3.14.4)

В области, где не равна тождественно нулю, уравнение (3.14.3) примет вид . (3.14.5)

Введя обозначение , (3.14.6)

получим уравнение , (3.14.7)

решение которого будет иметь вид

Из первой части условия (3.14.4) следует . Вторая часть этого условия

Будет выполнена лишь в случае, если

(n= 1,2,3,…), (3.14.9)

откуда, приняв во внимание (3.14.6), найдем собственные значения энергии частицы (п= 1,2,3,…). (3.14.10)

Спектр энергии оказался дискретным.

Оценим «расстояния» между соседними уровнями. Разность энергий между двумя соседними уровнями равна

Если оценить эту величину для молекулы газа в сосуде (т ~ 10 кг, l ~ 10cм), получим Дж эВ. Столь густо расположенные энергетические уровни будут практически восприниматься как сплошной спектр энергии, так что, хотя квантование энергии в принципе будет иметь место, на характере движения молекул это сказываться не будет. Аналогичный результат получим, если рассмотреть поведение свободных электронов в металле (те же размеры ямы, т ~ 10 кг, Дж эВ). Однако, совсем другой результат получится для электрона, если область, в пределах которой он может двигаться, будет порядка атомных размеров (~ 10 м). В этом случае

так что дискретность энергетических уровней будет весьма заметна.

Атом водорода.

Рассмотрим систему, называемую водородоподобным атомом, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона (при Z=1 – это атом водорода). Потенциальная энергия электрона представляет собой в этом случае сферически симметричную функцию

Такой случай не предусматривался теорией Бора. В ней движение электрона вокруг ядра происходило по плоским орбитам. Но в квантовой механике, в которой нет представления о движении электронов по орбитам, нет препятствий для реализации сферически симметричных состояний атома. Поэтому уравнение Шрёдингера целесообразно записать в сферической системе координат: r, . Решая это уравнение, получим, что собственные значения энергии могут принимать 1)любые положительные значения 2) дискретные отрицательные значения, равные (п= 1,2,3,…). (3.14.13)

Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся на бесконечность. Случай Е < 0 - электрону, связанному с ядром. Заметим, что полученное выражение (3.14.13) совпадает с соответствующей формулой теории Бора (3.12.12). Однако в квантовой механике эти значения получаются из решения основного уравнения без введения каких-либо дополнительных предположений.

Собственные функции уравнения Шрёдингера оказываются от трех целочисленных параметров, которые принято обозначать п, l, т , и распадаются на два множителя, один из которых зависит только от r , другой – от углов

Параметры п, т называются квантовыми числами. Параметр п называется главным квантовым числом и совпадает с номером уровня энергии в (3.14.13). Параметр l называется азимутальным (или орбитальным) квантовым числом и может при заданном п принимать значения

Из курса физики вы знаете, что атом любого вещества состоит из ядра и обращающихся вокруг него электронов. Такую модель атома предложил выдающийся английский физик Э. Резерфорд. Основываясь на этой модели, один из основоположников квантовой механики датский физик Н. Бор в 1913 году произвел первые правильные расчеты атома водорода, достаточно хорошо совпавшие с экспериментальными данными. Теория атома водорода, предложенная Бором, сыграла чрезвычайно важную роль в развитии квантовой механики, хотя в дальнейшем и претерпела существенные изменения.

Атом водорода. Постулаты Бора . Согласно модели Резерфорда-Бора атом водорода состоит из однократно заряженного положительного ядра и одного электрона, обращающегося вокруг него. В первом приближении можно предположить, что движение электрона происходит по траектории, представляющей собой окружность, в центре которой находится неподвижное ядро. В соответствии с требованиями классической электродинамики всякое ускоренное движение заряженного тела (в том числе и электрона) должно сопровождаться испусканием электромагнитных волн. В рассматриваемой модели атома электрон движется с колоссальным центростремительным ускорением, и поэтому он должен был бы непрерывно испускать свет. При этом энергия его должна была бы уменьшаться, а сам электрон должен был бы все ближе и ближе смещаться к ядру. Закончилось бы это тем, что электрон объединился бы с ядром ("упал" бы на ядро). Однако ничего подобного не происходит и атомы в невозбужденном состоянии не испускают света. Для объяснения этого факта Бор предложил два основных постулата.

Согласно первому постулату Бора электрон может находиться только на таких орбитах, для которых момент количества движения электрона (то есть произведение количества движения электрона mν на радиус орбиты ) кратен значению (где - постоянная Планка) * . Пока электрон находится на одной из таких орбит, излучения энергии не происходит. Каждой разрешенной орбите электрона соответствует определенная энергия, или определенное энергетическое состояние атома, называемое стационарным. Находясь в стационарном состоянии, атом не излучает света. Математически первый постулат Бора можно записать так:


где - некоторое целое число, называемое главным квантовым числом.

* (Постоянная Планка является универсальной физической константой и имеет смысл произведения энергии на время, называемого в механике действием. Благодаря тому что величина h представляется как бы элементарным количеством действия, постоянная Планка называется квантом (порцией) действия. Введение в физику понятия кванта действия было началом создания важнейшей физической теории XX века - квантовой теории. Квант действия очень мал: )

Второй постулат Бора содержит утверждение, что поглощение или испускание света атомом происходит только при переходах атома из одного стационарного состояния в другое. При этом энергия поглощается или испускается определенными порциями, квантами, значение которых hν определяется разностью энергий, соответствующих начальному и конечному стационарным состояниям атома:


где - энергия начального состояния атома, - энергия его конечного состояния, ν - частота света, испущенного или поглощенного атомом. Если то энергия излучается атомом, если же то поглощается.

Позже кванты света получили название фотонов .

Таким образом, по теории Бора электрон в атоме не может изменять свою траекторию постепенно (непрерывно), а может лишь "перепрыгивать" с одной стационарной орбиты на другую. При переходе со стационарной орбиты, более удаленной от ядра, на стационарную орбиту, расположенную ближе к ядру, как раз и происходит испускание света.

Радиусы орбит и энергетические уровни атомов . Радиусы разрешенных электронных орбит можно найти, используя закон Кулона, соотношения классической механики и первый постулат Бора. Их значения определяются выражением


Самой близкой к ядру разрешенной орбите соответствует n = 1. Используя полученные экспериментально значения величин m, e и A, находим для ее радиуса значение

Эта величина как раз и принимается за радиус атома водорода. Любая другая орбита с квантовым числом n имеет радиус


Таким образом, радиусы последовательно расположенных электронных орбит возрастают как квадрат числа n (рис. 1).

Значение полной энергии атома, соответствующей нахождению электрона на n-ой орбите, определяется формулой


Эти значения энергий называются энергетическими уровнями атома, Если по вертикальной оси откладывать возможные значения энергии атома, то можно получить так называемый энергетический спектр разрешенных состояний атома (рис. 2).

Расстояние между последовательно расположенными энергетическими уровнями быстро уменьшается. Это можно легко объяснить: увеличение энергии атома (за счет поглощения атомом энергии извне) сопровождается переходом электрона на все более удаленные орбиты, где взаимодействие между ядром и электроном становится более слабым. По этой причине переход между соседними удаленными орбитами связан с очень малым изменением энергии. Энергетические уровни при этом располагаются настолько близко, что спектр становится практически непрерывным. В верхней части непрерывный спектр заканчивается уровнем ионизации атома (n = ∞), соответствующим полному отделению электрона от ядра (электрон становится свободным).

Знак "-" в выражении для полной энергии атома указывает на то, что энергия атома тем меньше, чем ближе к ядру находится электрон. Для того чтобы удалить электрон от ядра, необходимо затратить определенную энергию, то есть сообщить атому некоторую энергию извне. Энергия атома принимается равной нулю при n = ∞, т. е. в случае, когда атом ионизирован. Именно поэтому значениям соответствуют отрицательные значения энергии. Уровню с n = 1 соответствуют минимальная энергия атома и минимальный радиус разрешенной орбиты электрона. Этот уровень называется основным или невозбужденным. Уровни с n = 2, 3, 4, ... называются уровнями возбуждения.

Квантовые числа . В теории Бора предполагалось, что электронные орбиты имеют вид окружностей. Эта теория дала достаточно хорошие результаты только при рассмотрении самого простого атома - атома водорода. Но уже при расчете атома гелия она не смогла дать количественно правильные результаты. Определенным шагом вперед была планетарная модель атома, предполагавшая движение электронов подобно планетам солнечной системы по эллиптическим орбитам, в одном из фокусов которых располагалось ядро. Однако и эта модель быстро исчерпала себя, не дав ответа на многие вопросы.

Это связано с принципиальной невозможностью определения характера движения электрона в атоме. В доступном нашему наблюдению макромире нет аналогов этого движения. Мы не можем не только проследить путь движения электрона, но и даже определить точно его местонахождение в какой-либо определенный момент времени. Само понятие орбиты, или траектории движения электрона в атоме, лишено физического смысла. Никакой определенной последовательности появления электрона в различных точках пространства установить нельзя, он оказывается как бы "размазанным" в некоторой области, называемой обычно электронным облаком. Облако это, например, для невозбужденного атома водорода имеет форму шара, но плотность его не одинакова. Вероятность обнаружения электрона будет наибольшей вблизи сферы с радиусом r 1 , соответствующим радиусу первой боровской орбиты. В дальнейшем под орбитой электрона в атоме мы будем понимать геометрическое место точек, которые характеризуются наибольшей вероятностью обнаружения электрона, или, другими словами, область пространства с наибольшей плотностью электронного облака.

Всегда сферическим электронное облако будет лишь для случая невозбужденного состояния атома водорода, когда главное квантовое число n = 1 (рис. 3, а). Если же n = 2, то, помимо сферического облака, размеры которого будут теперь в четыре раза больше, электрон может создать облако в виде своеобразной гантельки (рис. 3, б). С появлением несферичности области преимущественной локализации электрона (электронного облака) связано введение второго квантового числа l, называемого орбитальным квантовым числом . Каждому значению главного квантового числа n соответствуют положительные целочисленные значения квантового числа l от нуля до (n - 1):

Так, если n = 1, то l имеет единственное значение, равное нулю. Если же n = 3, то l может принимать значения 0, 1, 2. При n = 1 имеется только сферическая орбита, поэтому и l = 0. Когда n = 2, возможны как сферическая, так и гантелеобразные орбиты, поэтому и l может быть равным либо нулю, либо единице.

Если n = 3, то l = 0, 1, 2. Электронное облако, соответствующее значению l = 2, приобретает уже довольно сложный характер. Для нас, однако, важна не форма электронного облака, а то, какая ему соответствует энергия атома.

Энергия атома водорода определяется только значением главного квантового числа n и не зависит от значения орбитального числа l. Иначе говоря, если n = 3, то атом будет иметь определенную энергию W 3 независимо от того, на какой из возможных орбит, соответствующих данному значению n и различным возможным значениям l, находится электрон. Это означает, что при возвращении с уровня возбуждения на основной уровень атом будет испускать фотоны, энергия которых не зависит от значения l.

Рассматривая пространственную модель атома, необходимо иметь в виду, что электронные облака в нем имеют строго определенную ориентацию. Положение электронного облака в пространстве относительно выбранного каким-либо образом направления задается магнитным квантовым числом m, которое может принимать целочисленные значения от -l до +l, включая 0. При данной форме (данном значении l) электронное облако может иметь несколько различных ориентаций в пространстве. При l = 1 их будет три, соответствующих значениям магнитного квантового числа т, равным -1, 0 и +1. Если l = 2, то различных ориентаций электронного облака будет 5, соответствующих значениям m = -2, -1, 0, +1 и +2. Естественно, что если уж форма электронного облака в свободном атоме водорода не влияет на энергию атома, то тем более не влияет на энергию атома ориентация этого облака в пространстве.

Наконец, при более детальном рассмотрении экспериментальных данных выяснилось, что сами электроны могут находиться на орбитах в двух возможных состояниях, определяемых направлением так называемого спина электрона .

Но что такое спин электрона?

В 1925 году английские физики Дж. Уленбек и С. Гоудсмит для объяснения тонкой структуры линий в оптических спектрах некоторых элементов предложили гипотезу, согласно которой каждый электрон вращается вокруг своей собственной оси подобно волчку или веретену. При таком вращении электрон приобретает некоторый момент импульса, который и получил название спина (в переводе с английского спин означает вращение, веретено). Поскольку вращение может происходить по часовой стрелке или против, то и спин (иначе говоря, вектор момента импульса) может иметь два направления. В единицах спин равен 1 / 2 , а благодаря различным направлениям имеет знак "+" или "-". Таким образом, ориентация электрона на орбите определяется спиновым квантовым числом о, равным ± 1 / 2 . Отметим, что и ориентация спина, как и ориентация орбиты электрона, не влияет на энергию атома водорода, находящегося в свободном состоянии.

Более поздние исследования и расчеты показали, что объяснить спин электрона простым вращением его вокруг оси нельзя. При подсчете угловой скорости вращения электрона для объяснения экспериментальных данных выяснилось, что линейная скорость точек, лежащих на экваторе электрона (в предположении, что электрон имеет шарообразную форму), должна быть больше скорости света, чего не может быть. Спин является некоторой неотъемлемой характеристикой электрона, такой, например, как его масса или заряд.

Квантовые числа - адрес электрона в атоме . Итак, мы выяснили, что для описания движения электрона в атоме, или, как говорят физики, для определения состояния электрона в атоме, необходимо задать набор из четырех квантовых чисел: n, l, m и σ.

Главное квантовое число n определяет, грубо говоря, размеры электронной орбиты. Чем больше n, тем большее пространство охватывает соответствующее электронное облако. Задаваясь значением n, мы тем самым определяем номер электронной оболочки атома. Само число n может принимать любые целочисленные значения от 1 до ∞:

Орбитальное квантовое число l определяет форму электронного облака. Из всей совокупности орбит, относящихся к одному и тому же значению n, орбитальное число l выделяет орбиты, имеющие одинаковую форму. Каждому значению l соответствует своя подоболочка. Число подоболочек равно n, так как l может принимать значения от 0 до (n - 1):

Магнитное квантовое число m определяет пространственную ориентацию орбиты в группе орбит, имеющих одинаковую форму, то есть относящихся к одной подоболочке. В каждой подоболочке насчитывается (2l + 1) различно ориентированных орбит, поскольку m может принимать значения от 0 до ±l:

Наконец, спиновое квантовое число а определяет ориентацию спина электрона на заданной орбите. Значений у σ всего два:


Рассматривая атом водорода и оперируя понятиями "оболочка", "подоболочка", "орбита", мы говорили не столько о строении атома, сколько о возможностях, открывающихся перед единственным электроном, содержащимся в этом атоме. Электрон в атоме водорода может переходить с оболочки на оболочку и с орбиты на орбиту в пределах одной оболочки.

Гораздо сложнее оказывается картина распределения электронов и возможностей их переходов в многоэлектронных атомах.

Понравилась статья? Поделиться с друзьями: